Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
Abstract
Breast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private dataset with 1174 non-cancer and 794 cancer images labelled at the image level with pathological ground truth confirmation. We used feature extractors (ResNet-18, ResNet-34, ResNet-50 and EfficientNet-B0) pre-trained on ImageNet. The best results were achieved with multimodal-view classification using both CC and MLO images simultaneously, resized by half, with a patch size of 224 px and an overlap of 0.25. It resulted in AUC-ROC = 0.896 ± 0.017, F1-score 81.8 ± 3.2, accuracy 81.6 ± 3.2, precision 82.4 ± 3.3, and recall 81.6 ± 3.2. Evaluation with the Chinese Mammography Database, with 5-fold cross-validation, patient-wise breakdowns, and transfer learning, resulted in AUC-ROC 0.848 ± 0.015, F1-score 78.6 ± 2.0, accuracy 78.4 ± 1.9, precision 78.8 ± 2.0, and recall 78.4 ± 1.9. The CLAM algorithm’s attentional maps indicate the features most relevant to the algorithm in the images. Our approach was more effective than in many other studies, allowing for some explainability and identifying erroneous predictions based on the wrong premises.
Citations
-
6
CrossRef
-
0
Web of Science
-
8
Scopus
Authors (8)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/cancers15102704
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Cancers
no. 15,
ISSN: 2072-6694 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Bobowicz M., Rygusik M., Buler J., Buler R., Ferlin M., Kwasigroch A., Szurowska E., Grochowski M.: Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach// Cancers -Vol. 15,iss. 10 (2023), s.2704-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/cancers15102704
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 163 times
Recommended for you
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
- K. Pastuszak,
- A. Supernat,
- M. G. Best
- + 8 authors