Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach - Publication - Bridge of Knowledge

Search

Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach

Abstract

Breast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private dataset with 1174 non-cancer and 794 cancer images labelled at the image level with pathological ground truth confirmation. We used feature extractors (ResNet-18, ResNet-34, ResNet-50 and EfficientNet-B0) pre-trained on ImageNet. The best results were achieved with multimodal-view classification using both CC and MLO images simultaneously, resized by half, with a patch size of 224 px and an overlap of 0.25. It resulted in AUC-ROC = 0.896 ± 0.017, F1-score 81.8 ± 3.2, accuracy 81.6 ± 3.2, precision 82.4 ± 3.3, and recall 81.6 ± 3.2. Evaluation with the Chinese Mammography Database, with 5-fold cross-validation, patient-wise breakdowns, and transfer learning, resulted in AUC-ROC 0.848 ± 0.015, F1-score 78.6 ± 2.0, accuracy 78.4 ± 1.9, precision 78.8 ± 2.0, and recall 78.4 ± 1.9. The CLAM algorithm’s attentional maps indicate the features most relevant to the algorithm in the images. Our approach was more effective than in many other studies, allowing for some explainability and identifying erroneous predictions based on the wrong premises.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Cancers no. 15,
ISSN: 2072-6694
Language:
English
Publication year:
2023
Bibliographic description:
Bobowicz M., Rygusik M., Buler J., Buler R., Ferlin M., Kwasigroch A., Szurowska E., Grochowski M.: Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach// Cancers -Vol. 15,iss. 10 (2023), s.2704-
DOI:
Digital Object Identifier (open in new tab) 10.3390/cancers15102704
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 148 times

Recommended for you

Meta Tags