Beta-galactosidase activity of Meiothermus ruber cells - Publication - Bridge of Knowledge

Search

Beta-galactosidase activity of Meiothermus ruber cells

Abstract

Freeze-dried cells of Meiothermus ruber catalyses cleavage of o-nitrophenyl-b-D-galactopiranoside (oNPb-gal) and conversion of lactose into glucose and galactose. The permeabilization with 2%toluene,20%ethanol and 20%acetone increased enzymatic activity from 74.87 U/g of lyophilized cells up to 129.44,114.38 and 90.19 U/g,respectively. Ethanol was an effective permeabilizing agent and its efficiency was dependent on the concentration, the incubation time and incubation temperature. The Km values for the untreated and permeabilized cells were 2.94 mM and 2.26 mM but Vmax values were 122 mmol/min and 193mmol/min, respectively. The optimum pH for the b-galactosidase activity in the untreated and permeabilized cells were 6.5 and optimum of temperatures 65C.The stabilit yof enzymatic activity in M.ruber cells incubated for 1 h at pH 6.5 was almost unchanged at temperatures below 65C.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Copyright (2011 Wiley Periodicals, Inc.)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF FOOD BIOCHEMISTRY no. 35, edition 5, pages 1468 - 1473,
ISSN: 0145-8884
Language:
English
Publication year:
2011
Bibliographic description:
Synowiecki J., Sinkiewicz I., Zakrzewska A., Grubiak K., Pietrow-Tobiszewska O.: Beta-galactosidase activity of Meiothermus ruber cells// JOURNAL OF FOOD BIOCHEMISTRY. -Vol. 35, iss. 5 (2011), s.1468-1473
DOI:
Digital Object Identifier (open in new tab) 10.1111/j.1745-4514.2010.00468.x
Bibliography: test
  1. of protein-dye binding. Anal. Biochem. 72, 248-254. open in new tab
  2. CANOVAS, M., TORROGLOSA, T. and IBORRA, J.L. 2005. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into L-carnitine. Enzyme Microb. Technol. 37, 300-308. open in new tab
  3. CARVALHO LINS, A. and ROCHA LEAO, M.H. 2002. Removal of skim milk lactose using free and immobilized Kluyveromyces marxianus cells. World J. Microbiol. Biotechnol. 18, 187-192. open in new tab
  4. CASTRO, H.P., TEIXEIRA, P.M. and KIRBY, R. 1996. Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying. Biotechnol. Lett. 18, 99-104. open in new tab
  5. CASTRO, H.P., TEIXEIRA, P.M. and KIRBY, R. 1997. Evidence of membrane damage in Lactobacillus bulgaricus following freeze-drying. J. Appl. Microbiol. 82, 87-94. open in new tab
  6. CRAVEN, G.R., STEERS, E. and ANFINSEN, C.B. 1965. Purification, composition and molecular weight of a b-galactosidase of Escherichia coli K12. J.Biol. Chem. 240, 2468-2477.
  7. DAS-BRADOO, S., SVENSOON, I., SANTOS, J., PLIEVA, F., MATTIASSON, B. and HATTI-KAUL, R. 2004. Synthesis of alkylgalactosides using whole cells of Bacillus pseudofirmus species as catalysts. J. Biotechnol. 110, 273-286. open in new tab
  8. DUETZ, W.A., BEILEN, J.B. and VAN WITHOLT, B. 2001. Using proteins in their natural environment: Potential and limitations of microbial whole-cell hydrosylation in applied biocatalysis. Curr. Opin. Biotechnol. 12, 419-425. open in new tab
  9. FELIX, H. 1982. Permeabilized cells. Anal. Biochem. 120, 211-234. open in new tab
  10. GROBOILLOT, A., BOADI, D.K., PONCELET, D. and NEUFELD, R.J. 1994. Immobilization of cells for application in the food industry. Crit. Rev. Biotechnol. 14, 75-107. open in new tab
  11. JIRKÚ, V. 2004. Permeabilization of covalently immobilized Saccharomyces cerevisiae. Acta Biotechnol. 12, 333-336. open in new tab
  12. KAMRAT, T. and NIDETZKY, B. 2007. Entrapment in E. coli improves the operational stability of recombinant b-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. J. Biotechnol. 129, 69-76. open in new tab
  13. KIM, Y.S., PARK, C.S. and OH, D.K. 2006. Lactulose production from lactose and fructose by a thermostable b-galactosidase from Sulfolobus solfataricus. Enzyme Microb. Technol. 39, 903-908. open in new tab
  14. LADERO, M., PEREZ, M.T., SANTOS, A. and GARCIA-OCHOA, F. 2003. Hydrolysis of lactose by free and immobilized b-galactosidase from Thermus sp. Strain T2. Biotechnol. Bioeng. 81, 241-252. open in new tab
  15. LEE, Y.J., KIM, C.S. and OH, D.K. 2004. Lactulose production by b-galactosidase in permeabilized cells of Kluyveromyces lactis. Appl. Microbiol. Biotechnol. 64, 787-793. open in new tab
  16. MORACCI, M., TRINCONE, COBUCCI-PONZANO, A., PERUGINO, B., CIARAMELLA, G. and ROSSI, M. 2001. open in new tab
  17. Enzymatic synthesis of oligosaccharides by two glycosyl hydrolases of S. solfataricus. Extremophiles 5, 145-152. open in new tab
  18. NI, Y. and CHEN and R.R. 2004. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol. Bioeng. 87, 804-811. open in new tab
  19. NOBRE, M.F., TRÜPER, H.G. and DA COSTA, M.S. 1996. Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Teneiro et al. 1995), and Thermus chliarophilus (Teneiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb., nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus. Intern. J. Syst. Bacteriol. 46, 604-606. open in new tab
  20. PETZELBAUER, I., NIDETZKY, B., HALTRICH, D. and KULBE, K.D. 1998. Development of an ultra-high temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable b-glycosidases. Biotechnol. Bioeng. 64, 322-332. open in new tab
  21. PISANI, F.M., RELLA, R., RAIA, C., ROZZO, C., NUCI, R., GAMBACORTA, A., DE ROSA, M. and ROSE, M. 1990. Thermostable b-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur. J. Biochem. 187, 321-328. open in new tab
  22. RAMAKRISHNA, S.V. and PRAKASHAM, R.S. 1999. Microbial fermentation with immobilized cells. Curr. Sci. 77, 87-100.
  23. SHUTTE, H. and KULA, M.R. 1990. Pilot-and process-scale techniques for cell disruption. Biotechnol. Appl. Biochem. 12, 599-620.
  24. SISO, M.I.G., CERDÁN, E., PICOS, M.A.F., RAMIL, E., BELMONTE, E.R. and TORRES, A.R. 1992. Permeabilization of Kluyveromyces lactis cells for milk whey saccharification: A comparison of different treatments. Biotechnol. Tech. 6, 289-292. open in new tab
  25. SISO, M.I. and DOVAL, S.S. 1994. Kluyveromyces lactis immobilization on corn grits for milk whey lactose hydrolysis. Enzyme Microb. Technol. 16, 303-310. open in new tab
  26. SOMKUTI, G.A., DOMINIECKI, M.E. and STEINBERG, D.H. 1996. Sensitivity of Streptococcus thermophilus to chemical permeabilization. Curr. Microbiol. 32, 101-105. open in new tab
  27. SPLECHTNA, B., PETZELBAUER, I., KUHN, B., KULBE, K.D. and NIDETZKY, B. 2002. Hydrolysis of lactose by b-glycosidase CelB from hyperthermophilic archaeon P. furiosus. Appl. Biochem. Biotechnol. 98-100, 473-487. open in new tab
  28. SYNOWIECKI, J. 2008. Thermostable enzymes in food processing. In Recent Research Developments in Food Biotechnology. Enzymes as Additives or Processing Aids (R. Porta, P. Di Pierro and L. Mariniello, eds.) p. 29, Research Signpost, Kerala, India.
  29. SYNOWIECKI, J. and MACIUŃ SKA, J. 2002. Isolation and some properties of the thermostable b-galactosidase of Pyrococcus woesei expressed in Escherichia coli. J. Food Biochem. 26, 49-62. open in new tab
  30. TENEIRO, S., NOBRE, M.F. and DA COSTA, M.S. 1995. Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species of Thermus ruber but with lower growth temperatures. Intern. J. Syst. Bacteriol. 45, 633-639. open in new tab
  31. BRADFORD, M.M. 1976. A rapid and sensitive method for open in new tab
Verified by:
Gdańsk University of Technology

seen 101 times

Recommended for you

Meta Tags