Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study - Publication - Bridge of Knowledge

Search

Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study

Abstract

Here, we report on an electrochemical impedance study of silica of organic origin as an active electrode material. The electrode material obtained from carbonized marine biomass containing nanoporous diatoms has been characterised by means of XRD, IR, SEM and EIS. Dif- ferent kinds of crystallographic phases of silica as a result of thermal treatment have been found. The electrode is electrochemically stable during subsequent cyclic voltam- metrymeasurements taken in the potential range from 0.005 up to 3.0 V vs. Li/Li+. The material has been found to exhibit high charge capacitance of 521 mAh g−1 being cycled at a rate C/20 with capacity retention of about 97%. Electrochemical impedance spectroscopy performed at an equilibrated potential E = 0.1 V in the temperature range 288–294 K discloses low charge transfer resistivity and low diffusional impedance

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 23 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF SOLID STATE ELECTROCHEMISTRY no. 21, edition 8, pages 2251 - 2258,
ISSN: 1432-8488
Language:
English
Publication year:
2017
Bibliographic description:
Nowak A., Lisowska-Oleksiak A., Wicikowska B., Gazda M.: Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study// JOURNAL OF SOLID STATE ELECTROCHEMISTRY. -Vol. 21, iss. 8 (2017), s.2251-2258
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10008-017-3561-z
Bibliography: test
  1. Aurbach D, Zaban A (1994) Impedance spectroscopy of lithium electrodes: part 3. The importance of Li electrode surface preparaion. J Electroanal Chem 365:41-45 open in new tab
  2. Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulho LOS (1998) Impedance of constant phase element (CPE)-blocked dif- fusion in film electrodes. J Electroanal Chem 452:229-234 open in new tab
  3. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem 47(16):2930-46 open in new tab
  4. Brug G, van den Eeden A, Sluyters-Rehbach M, Sluyters J (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275-295 open in new tab
  5. Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ (2012) Quartz (SiO 2 ): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5(5):6895-6899 open in new tab
  6. Chen Y, Nie M, Lucht BL, Saha A, Guduru PR, Bose A (2014) High capacity, stable silicon/carbon anodes for lithium-ion bat- teries prepared using emulsion-templated directed assembly. ACS Appl Mater Interfaces 6(7):4678-4683 open in new tab
  7. Dees DW, Kawauchi S, Abraham DP, Prakash J (2009) Analy- sis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode. J Power Sources 189(1):263-268 open in new tab
  8. Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limita- tions. Electrochim Acta 48(11):1579-1587 open in new tab
  9. Doh CH, Veluchamy A, Lee DJ, Lee JH, Jin BS, Moon SI, Park CW, Kim DW (2010) Comparative study on performances of com- posite anodes of SiO, Si and Graphite for lithium rechargeable batteries. Bull Korean Chem Soc 31(5):1257-1261 open in new tab
  10. Forney MW, Ganter MJ, Staub JW, Ridgley RD, Landi BJ (2013) Prelithiation of silicon carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett 13:4158-4163 open in new tab
  11. Funabiki A, Ogumi Z (1998) Impedance study on the electro- chemical lithium intercalation into natural graphite powder. J Electrochem Soc 145(1):172-178 open in new tab
  12. Funabiki A, Inaba M, Ogumi Z (1997) A.C. Impedance analy- sis of electrochemical lithium intercalation into highly oriented pyrolytic graphite. J Power Sources 68:227-231 open in new tab
  13. Funke K (2013) Solid state ionics: from Michael Faraday to green energy-the European dimension. Sci Technol Adv Mater 14(4):043,502 open in new tab
  14. Gao B, Sinha S, Fleming L, Zhou O (2001) Alloy formation in nanostructured silicon. Adv Mater 11:816-819 open in new tab
  15. Garcia-Jareno J, Sanmatias A, Vicente F, Benito D (1998) Tem- perature dependence of impedance spectra of pRussian Blue films deposited on IT0 electrodes. Electrochim Acta 43(97):235-243 open in new tab
  16. Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO 2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876- 1878 open in new tab
  17. Hu Q, Suzuki H, Gao H, Araki H, Yang W, Noda T (2003) High- frequency FTIR absorption of SiO 2 /Si nanowires. Chem Phys Lett 378(3-4):299-304 open in new tab
  18. Kaspar J, Graczyk-Zajac M, Riedel R (2014) Determination of the chemical diffusion coefficient of Li-ions in carbon-rich sili- con oxycarbide anodes by electro-analytical methods. Electrochim Acta 115:665-670 open in new tab
  19. Keiser H, Beccu KD, Gutjahr MA (1976) Abschtzung der poren- struktur porser elektroden aus impedanzmessungen. Electrochim Acta 21:539-543 open in new tab
  20. La Mantia F, Vetter J, Novák P (2008) Impedance spectroscopy on porous materials: a general model and application to graphite elec- trodes of lithium-ion batteries. Electrochim Acta 53(12):4109- 4121 open in new tab
  21. Lippincott ER, Valkenburg AV, Weir CE, Bunting EN (1958) Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J Res Natl Bur Stand 61(1):61-70 open in new tab
  22. Lisowska-Oleksiak A, Nowak AP (2008) Impedance spec- troscopy studies on hybrid materials consisting of poly(3,4- ethylenedioxythiophene) and iron, cobalt and nickel hexacyano- ferrate. Solid State Ion 179(1-6):72-78 open in new tab
  23. Lisowska-Oleksiak A, Nowak AP, Wicikowska B (2014) Aquatic biomass containing porous silica as an anode for lithium ion batteries. RSC Adv 4:40,439-40,443 open in new tab
  24. Macdonald DD (2006) Reflections on the history of electrochem- ical impedance spectroscopy. Electrochim Acta 51:1376-1388 open in new tab
  25. MacDonald J, Johnson MB (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley-Vch, New York 26. NuLi Y, Yang J, Jiang Z (2006) Intercalation of lithium ions into bulk and powder highly oriented pyrolytic graphite. J Phys Chem Solid 67(4):882-886
  26. Pan Q, Zuo P, Mu T, Du C, Cheng X, Ma Y (2017) Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J Power Sources 347:170-177 open in new tab
  27. Pistoia G (1994) Lithium batteries: new materials, developments, and perspectives
  28. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364-457 open in new tab
  29. Ruffo R, Hong SS, Chan CK, Huggins RA, Cui Y (2009) Impedance analysis of silicon nanowire lithium ion battery anodes. J Power Sources 189(2):11,390-11,398
  30. Seethalakshmi N, Selvakumar R (2015) Investigation of porous silica nanostructures in diatoms isolated from Kurichi and Sulur lakes of Coimbatore, India using field emission scanning electron microscopy. Micron 79:24-28
  31. Seong IW, Kim KT, Yoon WY (2009) Electrochemical behav- ior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J Power Sources 189(1):511-514 open in new tab
  32. Teki R, Datta MK, Krishnan R, Parker TC, Lu TM, Kumta PN, Koratkar N (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5(20):2236-42 open in new tab
  33. Turcio-Ortega D, Pandiyan T, García-Ochoa EM (2007) Electro- chemical impedance spectroscopy (EIS) study of the film forma- tion of 2-imidazoline derivatives on carbon steel in acid solution. Mater Sci 13(2):163-166 open in new tab
  34. Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR (2001) Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: part I. Graphi- tized carbon. Electrochim Acta 47:885-890 open in new tab
  35. Wang C, Appleby AJ, Little FE (2001) Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim Acta 46:1793-1813 open in new tab
  36. Wang C, Appleby AJ, Little FE (2002) Irreversible capacities of graphite anode for lithium-ion batteries. J Electroanal Chem 519:9-17 open in new tab
  37. Wang K, Ma B, Wang Y, An L (2013) Complex impedance spec- tra of Polymer-Derived silicon oxycarbides. J Am Ceram Soc 96(5):1363-1365 open in new tab
  38. Winter BM, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater (10):725-763 open in new tab
  39. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO 2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568-1574 open in new tab
  40. Yu P, Popov BN, Ritter JA, White RE (1999) Determination of the lithium ion diffusion coefficient in graphite. J Electrochem Soc 146(1):8-14 open in new tab
  41. Zhang S, He M, Su CC, Zhang Z (2016) Advanced elec- trolyte/additive for lithium-ion batteries with silicon anode. Curr Opin Chem Eng 13:24-35 open in new tab
  42. Zoltowski P (1998) On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J Electroanal Chem 443(1):149-154 open in new tab
Verified by:
Gdańsk University of Technology

seen 125 times

Recommended for you

Meta Tags