Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes - Publication - Bridge of Knowledge

Search

Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes

Abstract

The biomass of one type cultivated diatoms (Pseudostaurosira trainorii), being a source of 3D-stuctured biosilica and organic matter—the source of carbon, was thermally processed to become an electroactive material in a potential range adequate to become an anode in lithium ion batteries. Carbonized material was characterized by means of selected solid-state physics techniques (XRD, Raman, TGA). It was shown that the pyrolysis temperature (600 °C, 800 °C, 1000 °C) affected structural and electrochemical properties of the electrode material. Biomass carbonized at 600 °C exhibited the best electrochemical properties reaching a specific discharge capacity of 460 mAh g−1 for the 70th cycle. Such a value indicates the possibility of usage of biosilica as an electrode material in energy storage applications

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cite as

Full text

download paper
downloaded 80 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 14,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Nowak A., Sprynskyy M., Wojtczak I., Trzciński K., Wysocka J., Szkoda M., Buszewski B., Lisowska-Oleksiak A.: Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes// Materials -Vol. 13,iss. 7 (2020), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13071673
Bibliography: test
  1. Arrhenius, S. XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1896, 41, 237-276. [CrossRef] open in new tab
  2. Islam, M.S.; Bruce, P.G.; Richard, C.A.; Nelson, J. Energy materials for a low carbon future. Philos. Trans. R. Soc. A 2019, 377, 20190219. [CrossRef] [PubMed] open in new tab
  3. Prochowicz, D.; Saski, M.; Yadav, P.; Grätzel, M.; Lewiński, J. Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication. Acc. Chem. Res. 2019, 52, 3233-3243. [CrossRef] [PubMed] open in new tab
  4. Ji, X. A paradigm of storage batteries. Energy Environ. Sci. 2019, 12, 3203-3224. [CrossRef] open in new tab
  5. Brédas, J.-L.; Buriak, J.M.; Caruso, F.; Choi, K.-S.; Korgel, B.A.; Palacin, M.R.; Persson, K.; Reichmanis, E.; Schüth, F.; Seshadri, R.; et al. An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chem. Mater. 2019, 31, 8577-8581. [CrossRef] open in new tab
  6. Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783-789. open in new tab
  7. Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ion. 1981, 4, 171-174. open in new tab
  8. Whittingham, M.S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127. [CrossRef] open in new tab
  9. Whittingham, M.S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Prog. Solid State Chem. 1978, 12, 41-99. [CrossRef] open in new tab
  10. Nowak, A.P. Composites of tin oxide and different carbonaceous materials as negative electrodes in lithium-ion batteries. J. Solid State Electrochem. 2018, 22, 2297-2304. [CrossRef] open in new tab
  11. Reddy, M.V.; Rao, G.V.S.; Chowdari, B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 2013, 113, 5364-5457. [CrossRef] [PubMed] open in new tab
  12. Liu, J.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries. Angew. Commun. 2015, 54, 9632-9636. [CrossRef] [PubMed] open in new tab
  13. Guo, B.; Shu, J.; Wang, Z.; Yang, H.; Shi, L.; Liu, Y.; Chen, L. Electrochemistry Communications Electrochemical reduction of nano-SiO 2 in hard carbon as anode material for lithium ion batteries. Electrochem. Commun. 2008, 10, 1876-1878. [CrossRef] open in new tab
  14. Lener, G.; Garcia-Blanco, A.A.; Furlong, O.; Nazzarro, M.; Sapag, K.; Barraco, D.E.; Leiva, E.P.M. A silica/carbon composite as anode for lithium-ion batteries with a large rate capability: Experiment and theoretical considerations. Electrochim. Acta 2018, 279, 289-300. [CrossRef] open in new tab
  15. Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285-309. [CrossRef] open in new tab
  16. Lisowska-Oleksiak, A.; Wicikowska, B.; Nowak, A.P.; Olejniczak, Z. Preparation and Characterization of Nanomaterial Consisting of Silica Aerogel & Carbon Tested as an Electrode in Non-Aqueous Media Containing Lithium Salt. Int. J. Electrochem. Sci. 2017, 11, 1997-2017.
  17. Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H. Quartz (SiO 2 ): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895-6899. [CrossRef] open in new tab
  18. Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ. Sci. 2011, 4, 3930-3941. [CrossRef] open in new tab
  19. Sun, X.W.; Zhang, Y.X.; Losic, D. Diatom silica, an emerging biomaterial for energy conversion and storage. J. Mater. Chem. A 2017, 5, 8847-8859. [CrossRef] open in new tab
  20. Nowak, A.P.; Sprynskyy, M.; Brzozowska, W.; Lisowska-oleksiak, A. Electrochemical behavior of a composite material containing 3D-structured diatom biosilica. Algal Res. 2020, 41, 101538. [CrossRef] open in new tab
  21. Ratyński, M.; Hamankiewicz, B.; Krajewski, M.; Czerwinski, A. The effect of compressive stresses on a silicon electrode's cycle life in a Li-ion battery. RSC Adv. 2018, 8, 22546-22551. [CrossRef] open in new tab
  22. Fu, C.; Xu, L.; Aquino, F.W.; Cresce, A.V.; Gobet, M.; Greenbaum, S.G.; Xu, K.; Wong, B.M.; Guo, J. Correlating Li + -Solvation Structure and its Electrochemical Reaction Kinetics with Sulfur in Subnano Confinement. J. Phys. Chem. Lett. 2018, 9, 1739-1745. [CrossRef] [PubMed] open in new tab
  23. Fu, C.; Oviedo, M.B.; Zhu, Y.; Von Wald Cresce, A.; Xu, K.; Li, G.; Itkis, M.E.; Haddon, R.C.; Chi, M.; Han, Y.; et al. Confined Lithium-Sulfur Reactions in Narrow-Diameter Carbon Nanotubes Reveal Enhanced Electrochemical Reactivity. ACS Nano 2018, 12, 9775-9784. [CrossRef] [PubMed] open in new tab
  24. Wicikowska, B. Otrzymywanie I Właściwości Materiałów Anodowych Zawierających Nanokompzyty Krzemionkowo-Węglowe Do Ogniw Litowo-Jonowych. Ph.D. Thesis, Gdańsk University of Technology, Gdańsk, Poland, 2017.
  25. Xia, X.; Afshar, A.; Yang, H.; Portela, C.M.; Kochmann, D.M.; Claudio, V.; Leo, D.; Greer, J.R. Electrochemically reconfigurable architected materials. Nature 2019, 573, 205-213. [CrossRef] open in new tab
  26. Luo, S.; Greer, J.R. Bio-Mimicked Silica Architectures Capture Geometry, Microstructure, and Mechanical Properties of Marine Diatoms. Adv. Eng. Mater. 2018, 20, 1800301. [CrossRef] open in new tab
  27. Chepurnov, V.A.; Mann, D.G.; Von Dassow, P.; Vanormelingen, P.; Gillard, J.; Inze, D. In search of new tractable diatoms for experimental biology. BioEssays 2008, 30, 692-702. [CrossRef] open in new tab
  28. Żak, A.; Kosakowska, A. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar. Coast. Shelf Sci. 2015, 167, 113-118. [CrossRef] open in new tab
  29. Lisowska-Oleksiak, A.; Nowak, A.P.; Wicikowska, B. Aquatic biomass containing porous silica as an anode for lithium ion batteries. RSC Adv. 2014, 4, 40439-40443. [CrossRef] open in new tab
  30. Nowak, A.P.; Lisowska-Oleksiak, A. Red Algae-An Alternative Source of Carbon Material for Energy Storage Application. Int. J. Electrochem. Sci. 2014, 9, 3715-3724. open in new tab
  31. Nowak, A.P.; Lisowska-Oleksiak, A.; Wicikowska, B.; Gazda, M. Biosilica from sea water diatoms algae-Electrochemical impedance spectroscopy study. J. Solid State Electrochem. 2017, 21, 2251-2258. [CrossRef] open in new tab
  32. Lisowska-Oleksiak, A.; Nowak, A.P.; Wicikowska, B. Sposób Otrzymania Anod Ogniw Litowo-Jonowych. Polish Patent Application No. 413911, 2015.
  33. Norberg, A.N.; Wagner, N.P.; Kaland, H.; Vullum-bruer, F.; Svensson, A.M. Silica from diatom frustules as anode material for Li-ion batteries. RSC Adv. 2019, 9, 41228-41239. [CrossRef] open in new tab
  34. Sprynskyy, M.; Pomastowski, P.; Hornowska, M.; Król, A.; Rafińska, K.; Buszewski, B. Naturally organic functionalized 3D biosilica from diatom microalgae. Mater. Des. 2017, 132, 22-29. [CrossRef] open in new tab
  35. Biernacki, J.J.; Wotzak, G.P. Stoichiometry of the C+ SiO 2 Reaction. J. Am. Ceram. Soc. 1989, 72, 122-129. [CrossRef] open in new tab
  36. Ibrahim, S.S.; Selim, A.Q. Heat treatment of natural diatomite. Physicochem. Probl. Miner. Process. 2012, 48, 413-424.
  37. DeMaster, D.J. The Diagenesis of Biogenic Silica: Chemical Transformations Occurring in the Water Column, Seabed, and Crust. Treatise Geochem. 2003, 7, 87-98. open in new tab
  38. Kumar, V.; Kashyap, M.; Gautam, S.; Shukla, P.; Joshi, K.B.; Vinayak, V. Fast Fourier infrared spectroscopy to characterize the biochemical composition in diatoms. J. Biosci. 2018, 43, 717-729. [CrossRef] open in new tab
  39. Heredia, A.; Figueira, E.; Rodrigues, C.T.; Rodríguez-galván, A.; Basiuk, V.A.; Vrieling, E.G.; Almeida, S.F.P. Cd2+ affects the growth, hierarchical structure and peptide composition of the biosilica of the freshwater diatom Nitzschia palea (Kützing) W. Smith. Phycol. Res. 2012, 60, 229-240. [CrossRef] open in new tab
  40. Wang, X.; Kong, R.; Pan, X.; Xu, H.; Xia, D.; Shan, H.; Lu, J.R. Role of Ovalbumin in the Stabilization of Metastable Vaterite in Calcium Carbonate Biomineralization. J. Phys. Chem. B 2009, 113, 8975-8982. [CrossRef] open in new tab
  41. Rickert, D.; Schlüter, M.; Wallmann, K. Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim. Cosmochim. Acta 2002, 66, 439-455. [CrossRef] open in new tab
  42. Gendron-Badou, A.; Coradin, T.; Maquet, J.; Fröhlich, F.; Livage, J. Spectroscopic characterization of biogenic silica. J. Non Cryst. Solids 2003, 316, 331-337. [CrossRef] open in new tab
  43. Bouregba, A.; Diouri, A. Potential formation of hydroxyapatite in total blood and dicalcium silicate elaborated from shell and glass powders. Mater. Lett. 2016, 183, 405-407. [CrossRef] open in new tab
  44. Lee, B.-S.; Lin, H.-P.; Chan, J.C.-C.; Wang, W.-C.; Tsai, Y.-H.; Lee, Y.-L. A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations. Int. J. Nanomed. 2018, 13, 261-271. [CrossRef] [PubMed] open in new tab
  45. Cabrera, A.B.; Mendoza, M.E. Lamellar ceramics of Ca 2 SiO 4 prepared by mechanical activation of powders. Rev. Mex. Fis. 2006, 52, 346-351.
  46. Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite Raman Spectrum of Graphite. J. Chem. Phys. 1970, 1126, 1126-1130. [CrossRef] open in new tab
  47. Wang, Y.; Alsmeyer, D.C.; Mccreery, R.L. Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem. Mater. 1990, 2, 557-563. [CrossRef] open in new tab
  48. Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [CrossRef] open in new tab
  49. Sze, S.; Siddique, N.; Sloan, J.J.; Escribano, R. Raman spectroscopic characterization of carbonaceous aerosols. Atmos. Environ. 2001, 35, 561-568. [CrossRef] open in new tab
  50. Nowak, A.P.; Hagberg, J.; Leijonmarck, S.; Schweinebarth, H.; Baker, D.; Uhlin, A. Lignin-based carbon fibers for renewable and multifunctional lithium-ion battery electrodes. Holzforschung 2018, 72, 81-90. [CrossRef] open in new tab
  51. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731-1742. [CrossRef] open in new tab
  52. Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095-14107. [CrossRef] open in new tab
  53. Hemley, R.J.; Mao, H.K.; Bell, P.M.; Mysen, B.O. Raman Spectroscopy of SiO 2 Glass at High Pressure. Phys. Rev. Lett. 2000, 57, 747-750. [CrossRef] [PubMed] open in new tab
  54. Yuan, P.; He, H.P.; Wu, D.Q.; Wang, D.Q.; Chen, L.J. Characterization of diatomaceous silica by Raman spectroscopy. Spectrochim. Acta Part A 2004, 60, 2941-2945. [CrossRef] [PubMed] open in new tab
  55. Kingma, K.J.; Hemley, R.J. Raman spectroscopic study of microcrystalline silica. Am. Mineral. 1994, 79, 269-273.
  56. Lee, E.L.; Wachs, I.E. In Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO 2 Supported Surface Metal Oxides. J. Phys. Chem. C 2007, 111, 14410-14425. [CrossRef] open in new tab
  57. Galeener, F.L. Planar rings in glasses. Solid State Commun. 1982, 44, 1037-1040. [CrossRef] open in new tab
  58. Shoval, S.; Boudeulle, M.; Yariv, S.; Lapides, I.; Panczer, G. Micro-Raman and FT-IR spectroscopy study of the thermal transformations of St. Claire dickite. Opt. Mater. 2001, 16, 319-327. [CrossRef] open in new tab
  59. Fuchs, I.; Aluma, Y.; Ilan, M.; Mastai, Y. Induced Crystallization of Amorphous Biosilica to Cristobalite by Silicatein. J. Phys. Chem. B 2014, 118, 2104-2111. [CrossRef] open in new tab
  60. Hutchison, S.G.; Richardson, L.S.; Wai, C.M. Carbothermic Reduction of Silicon Dioxide. Metall. Trans. B 1988, 19, 249-253. [CrossRef] open in new tab
  61. Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047-2051. [CrossRef] open in new tab
  62. Li, H.-H.; Wu, X.-L.; Sun, H.-Z.; Wang, K.; Fan, C.-Y.; Zhang, L.-L.; Yang, F.-M.; Zhang, J.-P. Dual-Porosity SiO 2 /C Nanocomposite with Enhanced Lithium Storage Performance. J. Phys. Chem. C 2015, 119, 3495-3501. [CrossRef] open in new tab
  63. Dahn, J.R.; Zheng, T.; Liu, Y.; Xue, J.S. Mechanisms for Lithium Insertion in Carbonaceous Materials. Science 1995, 270, 590-594. [CrossRef] open in new tab
  64. Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q. Hollow Porous SiO 2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries. Sci. Rep. 2013, 3, 1568. [CrossRef] [PubMed] open in new tab
  65. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 140 times

Recommended for you

Meta Tags