Electrochemical behavior of a composite material containing 3D-structured diatom biosilica - Publication - Bridge of Knowledge

Search

Electrochemical behavior of a composite material containing 3D-structured diatom biosilica

Abstract

3D-structured diatom biosilica mixed with conducting carbon black was investigated as an active electrode material for lithium-ion batteries. Diatom biosilica was obtained by cultivation of the selected diatom species under laboratory conditions. Several instrumental techniques (XRD, FTIR, Raman, SEM-EDX, TGA) were used to characterize the physicochemical properties of applied biosilica. It was evidenced that the prepared new composite material has a significant impact on the electrochemical properties of the electrode. The ratio 1:1 of biosilica and carbon black exhibited a specific capacity of 400 ± 9 mAh/g over 90 cycles. Such a ratio ensured proper electric contact between biosilica particles. The specificity of the faradaic process suggests that biosilica-based electrodes might be suitable in large-scale energy storage applications.

Citations

  • 3 0

    CrossRef

  • 0

    Web of Science

  • 3 0

    Scopus

Cite as

Full text

download paper
downloaded 47 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Algal Research-Biomass Biofuels and Bioproducts no. 41, pages 1 - 6,
ISSN: 2211-9264
Language:
English
Publication year:
2019
Bibliographic description:
Nowak A., Sprynskyy M., Brzozowska W., Lisowska-Oleksiak A.: Electrochemical behavior of a composite material containing 3D-structured diatom biosilica// Algal Research-Biomass Biofuels and Bioproducts -Vol. 41, (2019), s.1-6
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.algal.2019.101538
Bibliography: test
  1. S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, P. Natl, Acad. Sci. USA 106 (2009) 1704-1709. open in new tab
  2. M. Wakihara, Y. Yamamoto, O. Yamamoto, Lithium Ion Batteries Fundamentals, and Performance, Kodansha, Willey-VCH, Tokyo, 1998. open in new tab
  3. R.A. Huggins, Lithium alloy negative electrodes, J. Power Sources 81-82 (1999) 13-19. open in new tab
  4. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367. open in new tab
  5. R. Yazami, Ph. Touzain, A reversible graphite-lithium negative electrode for elec- trochemical generators, J. Power Sources 9 (1983) 365-371. open in new tab
  6. T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, Prog. Batteries Solar Cells 9 (1990) 209-217.
  7. E. Peled, The electrochemical behavior of alkali and alkaline earth metals in non- aqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc. 126 (1979) 2047-2051. open in new tab
  8. A.P. Nowak, Composites of tin oxide and different carbonaceous materials as ne- gative electrodes in lithium-ion batteries, J. Solid State Electrochem., DOI: https:// doi.org/10.1007/s10008-018-3942-y. open in new tab
  9. Q. Sun, B. Zhang, Z.-W. Fu, Lithium electrochemistry of SiO 2 thin film electrode for lithium-ion batteries, Appl. Surf. Sci. 254 (2008) 3774-3779. open in new tab
  10. N. Yan, F. Wang, H. Zhong, Y. Li, Y. Wang, L. Hu, Q. Chen, Hollow porous SiO 2 nanocubes towards high-performance anodes for lithium-ion batteries, Sci. Rep. 3 (2013) 1568-1574. open in new tab
  11. A.F. Rogers, Natural history of the silica minerals, Am. Mineral. 13 (1928) 73-92.
  12. Z. Favors, W. Wang, H.H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan, C.S. Ozkan, Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion bat- teries, Sci. Rep. 4 (5623) (2014) 1-6. open in new tab
  13. M.-S. Wang, Z.-Q. Wang, R. Jia, Y. Yang, F.-Y. Zhu, Z.-L. Yang, Y. Huang, X. Li, W. Xu, Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist as high performance anode for Li-ion battery, Appl. Surf. Sci. 456 (2018) 379-389. open in new tab
  14. B. Wicikowska, A.P. Nowak, Konrad Trzciński, A. Lisowska-Oleksiak, Electrochemical activity of electrode material consisting of porous copper and silica aerogel, Procedia Engineer 98 (2014) 42-45. open in new tab
  15. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377. open in new tab
  16. S.C. Nagpure, B. Bhushan, Nanomaterials for electrical energy storage devices, in: B. Bhushan (Ed.), Encyclopedia of Nanotechnology, Springer, Dordrecht, 2016. open in new tab
  17. X.W. Sun, Y.X. Zhang, D. Losic, Diatom silica, an emerging biomaterial for energy conversion and storage, J. Mater. Chem. A 5 (2017) 8847-8859. open in new tab
  18. M. Cegłowska, A. Toruńska-Sitarz, G. Kowalewska, H. Mazur-Marzec, Specific and genetic markers revealed a thousands-year presence of toxic Nodularia spumigena in the Baltic Sea, Mar. Drugs 16 (2018) 1-11, https://doi.org/10.3390/ md16040116 (116). open in new tab
  19. T. Jóźwiak, H. Mazur-Marzec, M. Pliński, Cyanobacterial blooms in the Gulf of Gdańsk (southern Baltic): the main effect of eutrophication, Oceanol. Hydrobiol. St. 37 (2008) 115-121. open in new tab
  20. M. De Stefano, L. De Stefano, Nanostructures in diatom frustules: functional mor- phology of valvocopulae in Cocconeidacean monoraphid taxa, J. Nanosci. Nanotechnol. 5 (2005) 15-24. open in new tab
  21. M. Wysokowski, T. Jesionowski, H. Ehrlich, Biosilica as a source for inspiration in biological materials science, Am. Mineral. 103 (2018) 665-691. open in new tab
  22. M. Gross, The mysterious of the diatoms, Curr. Biol. 22 (2012) R581-R585. open in new tab
  23. E. De Tommasi, J. Gielis, A. Rogato, Diatom frustule morphogenesis and function: a multidisciplinary survey, Mar. Genom. 35 (2017) 1-18. open in new tab
  24. A. Lisowska-Oleksiak, A.P. Nowak, B. Wicikowska, Aquatic biomass containing porous silica as an anode for lithium ion batteries, RSC Adv. 4 (2014) 40439-40443. open in new tab
  25. J. Entwistle, A. Rennie, S. Patwardhan, A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond, J. Mater. Chem. A 6 (2018) 18344-18356. open in new tab
  26. J. Rüger, N. Unger, I.W. Schie, E. Brunner, J. Popp, C. Kraff, Assessment of growth phases of the diatom Ditylum brightwellii by FT-IR and Raman spectroscopy, Algal Res. 19 (2016) 246-252. open in new tab
  27. A. Ozkan, G.L. Rorrer, Effects of CO 2 delivery on fatty acid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp, Algal Res. 26 (2017) 422-430. open in new tab
  28. N. Pytlik, J. Kaden, M. Finger, J. Naumann, S. Wanke, S. Machill, E. Brunner, Biological synthesis of gold nanoparticles by the diatom Stephanopyxis turris and in vivo SERS analyses, Algal Res. 28 (2017) 9-15. open in new tab
  29. J. Seckbach, P. Kociolek, The Diatom World, Springer, Netherlands, 2011. open in new tab
  30. N.I. Vazquez, Z. Gonzalez, B. Ferrari, Y. Castro, Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications, Bol. Soc. Esp. Ceram. V 56 (2017) 139-145. open in new tab
  31. I. Rea, M. Terracciano, S. Chandrasekaran, N. Voelcker, P. Dardano, N.M. Martucci, A. Lamberti, L. De Stefano, Bioengineered silicon diatoms: adding photonic features to a nanostructured semiconductive material for biomolecular sensing, Nanoscale Res. Lett. 11 (1-9) (2016) 405. open in new tab
  32. I. Rea, M. Terracciano, L. De Stefano, Synthetic vs natural: diatom bioderived porous materials for next generation of healthcare nanodevices, Adv. Healthcare Mater. 6 (1601125) (2017) 1-12. open in new tab
  33. M, Terracciano, L. De Stefano, I. Rea, Diatoms green nanotechnology for biosilica- based drug delivery systems, Pharmaceutics, 10 (2018) 242(1-15).
  34. L. De Stefano, M. De Stefano, E. De Tommasi, I. Rea, I. Rendina, A natural source of porous biosilica for nanotech applications: the diatoms microalgae, Phys. Status Solidi C 8 (2011) 1820-1825. open in new tab
  35. M. Pannico, I. Rea, S. Chandrasekaran, P. Musto, N.H. Voelcker, L. De Stefano, Electroless gold-modified diatoms as surface-enhanced Raman scattering supports, Nanoscale Res. Lett. 11 (1-6) (2016) 315. open in new tab
  36. L. De Stefano, P. Maddalena, L. Moretti, I. Rea, I. Rendina, E. De Tommasi, V. Mocella, M. De Stefano, Nano-biosilica from marine diatoms: a brand new ma- terial for photonic applications, Superlattice. Microst. 46 (2009) 84-89. open in new tab
  37. R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, High-purity nano silica powder from rice husk using a simple chemical method, J. Exp. Nanosci. 9 (2014) 272-281. open in new tab
  38. W.-S. Chang, C.-M. Park, J.-H. Kim, Y.-U. Kim, G. Jeong, H.-J. Sohn, Quartz (SiO 2 ): a new energy storage anode material for Li-ion batteries, Energy Environ. Sci. 5 (2012) 6895-6899. open in new tab
  39. J.P. Palma-Barrera, E. Sanchez-Ramírez, C. Ramírez-Marquez, J.A. Cervantes- Jauregui, J.G. Segovia-Hernandez, Reactive distillation column design for tetra- ethoxysilane (TEOS) production. Part II: dynamic properties and inherent safety, Ind. Eng. Chem. Res. 58 (2019) 259-275. open in new tab
  40. F. Fasaei, J.H. Bitter, P.M. Slegers, A.J.B. van Boxtel, Techno-economic evaluation of microalgae harvesting and dewatering systems, Algal Res. 31 (2018) 246-252. open in new tab
  41. J.M. Elzea, S.B. Rice, TEM and X-ray diffraction evidence for cristobalite and tri- dymite stacking sequences in opal, Clay Clay Miner. 44 (1996) 492-500. open in new tab
  42. J. Eckert, O. Gourdon, D.E. Jacob, C. Meral, P.J.M. Monteir, S.C. Vogel, R. Wirth, H.-R. Wenk, Ordering of water in opals with different microstructures, Eur. J. Mineral. 27 (2015) 203-213. open in new tab
  43. M. Sprynskyy, P. Pomastowski, M. Hornowska, A. Król, K. Rafińska, B. Buszewski, Naturally organic functionalized 3D biosilica from diatom microalgae, Mater. Des. 132 (2017) 22-29. open in new tab
  44. V.C. Farmer, The Infrared Spectra of Minerals, Mineralogical Society, London, UK, 1974.
  45. M. Hernández-Ortiz, G. Hernández-Padrón, R. Bernal, C. Cruz-Vázquez, V.M. Castaño, Nanocrystalline mimetic opals: synthesis and comparative char- acterization vs. natural stones, Int. J. Basic Appl. Sci. 4 (2015) 238-243. open in new tab
  46. S. Music, N. Filipovic-Vincekovic, L. Sekovanic, Precipitation of amorphous SiO 2 particles and their properties, Brazilian J. Chem. Eng. 28 (2011) 89-94. open in new tab
  47. W. Jiang, S. Luo, P. Liu, X. Deng, Y. Jing, C. Bai, J. Li, Purification of biosilica from living diatoms by a two-step acid cleaning and baking method, J. Appl. Phycol. 26 (2014) 1511-1518. open in new tab
  48. A.P. Nowak, A. Lisowska-Oleksiak, K. Siuzdak, M. Sawczak, M. Gazda, J. Karczewski, G. Trykowski, Tin oxide nanoparticles from laser ablation en- capsulated in a carbonaceous matrix -a negative electrode in lithium-ion battery applications, RSC Adv. 5 (2015) 84321-84327. open in new tab
  49. J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, SiO x -based anodes for secondary lithium batteries, Solid State Ionics 152 (2002) 125-129. open in new tab
  50. N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, Determination of the diffusion coefficient of lithium ions in nano-Si, Solid State Ionics 180 (2009) 222-225. open in new tab
  51. A. Ostadhossein, S.-Y. Kim, E.D. Cubuk, Y. Qi, A.C.T. van Duin, Atomic insight into the lithium storage and diffusion mechanism of SiO 2 /Al 2 O 3 electrodes of lithium ion batteries: ReaxFF reactive force field modeling, J. Physical Chem. A 120 (2016) 2114-2127. open in new tab
  52. Y. Wang, K. Xie, X. Guo, W. Zhou, G. Song, S. Cheng, Mesoporous silica nano- particles as high performance anode materials for lithium-ion batteries, New J. Chem. 40 (2016) 8202-8205. open in new tab
  53. H. Jung, B.C. Yeo, K.-R. Lee, S.S. Han, Atomistics of the lithiation of oxidized silicon (SiO x ) nanowires in reactive molecular dynamics simulations, PCCP 18 (2016) 32078-32086. open in new tab
  54. D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials, J. Electrochem. Soci. 148 (2001) A803-A811. open in new tab
  55. J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.-C. Mller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium- ion batteries, J. Power Sources 147 (2005) 269-281. open in new tab
  56. A.P. Nowak, et al. Algal Research 41 (2019) 101538 open in new tab
Verified by:
Gdańsk University of Technology

seen 113 times

Recommended for you

Meta Tags