Abstract
Experimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration, and melt-processing time. An in-house code was developed based on artificial neural network that learns and mimics processing torque and grafting of glycidyl methacrylate (GMA) typical vinylic monomer on high-density polyethylene (HDPE). Application of response surface and desirability function enabled concurrent optimization of processing torque and GMA grafting on HDPE, through which we quantified for the first time competition between parallel reactions taking place during melt processing: (i) desirable grafting of GMA on HDPE; (ii) undesirable cross-linking of HDPE. The proposed robust mathematical modeling approach can precisely learn the behavior of grafting reaction of vinylic monomers on polyolefins and be placed into practice in finding exact operating condition needed for efficient grafting of reactive monomers on polyolefins.
Citations
-
2 1
CrossRef
-
0
Web of Science
-
2 1
Scopus
Authors (8)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1080/15685551.2016.1239166
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
DESIGNED MONOMERS AND POLYMERS
no. 20,
edition 1,
pages 250 - 268,
ISSN: 1385-772X - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Saeb M., Rezaee B., Shadman A., Formela K., Ahmadi Z., Hemmati F., Kermaniyan T., Mohammadi Y.: Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach// DESIGNED MONOMERS AND POLYMERS. -Vol. 20, iss. 1 (2017), s.250-268
- DOI:
- Digital Object Identifier (open in new tab) 10.1080/15685551.2016.1239166
- Verified by:
- Gdańsk University of Technology
seen 123 times
Recommended for you
An investigation on the role of GMA grafting degree on the efficiency of PET/PP-g-GMA reactive blending: morphology and mechanical properties
- O. Jazani,
- H. Rastin,
- K. Formela
- + 4 authors