Detekcja materiałów przy użyciu organicznych tranzystorów polowych - Publication - Bridge of Knowledge

Search

Detekcja materiałów przy użyciu organicznych tranzystorów polowych

Abstract

W ciągu ostatnich dwudziestu lat nastąpił rozwój elektroniki organicznej, która stała się ważnym obszarem badań naukowych i technologicznych. Organiczne ogniwa fotowoltaiczne i organiczne diody elektroluminescencyjne zostały wykorzystane w urządzeniach komercyjnych, a jednym z najbardziej obiecujących zastosowań dla organicznych tranzystorów polowych są czujniki chemiczne i biologiczne. Postęp w tej dziedzinie jest tematem tego opracowania. W rozdziale przedstawiono zasadę działania, podstawowe parametry oraz charakterystyki prądowo-napięciowe organicznych tranzystorów polowych (OFET) oraz możliwości wykorzystania tych urządzeń jako czujników substancji gazowych i ciekłych. Przedstawiono zasadę działania czujników wykorzystujących OFET, a także potencjalne możliwości aplikacyjne tych urządzeń.

Cite as

Full text

download paper
downloaded 831 times
Publication version
Accepted or Published Version
License
Copyright (Wydawnictwo Naukowe TYGIEL sp. z o.o.)

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
Title of issue:
W :Cywilizacja XXI w. – nowe rozwiązania technologiczne strony 138 - 156
Language:
Polish
Publication year:
2017
Bibliographic description:
Franz M.: Detekcja materiałów przy użyciu organicznych tranzystorów polowych// Cywilizacja XXI w. : nowe rozwiązania technologiczne/ ed. Monika Maciąg, Kamil Maciąg Lublin: Wydawnictwo Naukowe TYGIEL sp. z o.o., 2017, s.138-156
Bibliography: test
  1. Bernards D.A., Owens R.M., Malliaras G.G. Organic Semiconductors in Sensor Applications, Springer Series in Material Science, (2007). open in new tab
  2. Torsi L., Magliulo M., Manoli K., Palazzo G. Organic field-effect transistors: a tutorial review, Chemical Society Reviews, 42 (2013), s. 8612-8628. open in new tab
  3. Lin P., Yan F. Organic thin-film transistors for chemical and biological sensing, Advanced Materials, 24 (2012), s. 34-51. open in new tab
  4. Mabeck J.T., Malliars G.G. Chemical and biological sensors based on organic thin-film transistors, Analytical and Bioanalytical Chemistry, 384 (2006), s. 343-353. open in new tab
  5. Someya T., Dodabalapur A., Huang J., See K.C., Katz H.E. Chemical and physical sensing by organic field-effect transistors and related devices, Advanced Materials, 22 (2010), s. 3799-3811. open in new tab
  6. Kergoat L., Piro B., Berggen M., Horowitz G., Pham M-Ch. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors, Analytical and Bioanalytical Chemistry, 402 (2012), s. 1813-1826. open in new tab
  7. Shen H., Di Ch-A., Zhu D. Organic transistor for bioelectronics applications, Science China, 60 (2017), s. 437-449. open in new tab
  8. Zang Y., Huang D., Di Ch-A., Zhu D. Device engineered organic transistors for flexible sensing applications, Advanced Materials, 28 (2016), s. 4549-4555. open in new tab
  9. Lv A., Pan Y., Chi L. Gas sensors based on polimer field-effect transistors, Sensors, 17 (2017), s. 1-16. open in new tab
  10. Zhang C., Chen P., Hu W. Organic field-effect transistor-based gas sensors, Chemical Society Reviews, 44 (2015), s. 2087-2107. open in new tab
  11. Lilienfeld J.E. Method and apparatus for controlling electric currents, US Patent 1745175, (1930). open in new tab
  12. Kahng D., Atalla M.M. Silicon -silicon dioxide field induced surface devices, IRE-AIEE Solid-State Device Res. Conf., Carnegie Inst. of Technology, Pittsburgh, PA, 27th-29th October 1960. open in new tab
  13. Horowitz G., Fichou D., Peng X., Xu Z., Garnier F. A field-effect transistor based on conjugated alpha-sexithienyl, Solid State Communications, Vol. 72, 4 (1989), s. 381-384. open in new tab
  14. Tsumura A., Koezuka H., Ando T. Macromolecular electronic device: field-effect transistor with a polythiophene thin film, Applied Physics Letters, 49 (1986), s. 1210-1212. open in new tab
  15. Sirringhaus H. 5th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon, Advanced Materials, 26 (2014), s. 1319-1335. open in new tab
  16. Sirringhaus H. Reliability of organic field-effect transistors, Advanced Materials, 21 (2009), s. 3859-3873. open in new tab
  17. Subbarao N.V.V., Gedda M., Iyer P.K., Goswami D.K. Enhanced environmental stability induced by effective polarization of a polar dielectric layer in a trilayer dielectric system of organic field-effect transistors: a quantitative study, ASC Applied Materials&Interfaces, 7 (2015), s. 1915-1924. open in new tab
  18. Horowitz G. Organic field-effect transistor, Advanced Materials, 10 (1998), s. 365-377. open in new tab
  19. Zaumseil J., Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors, Chemical Reviews, 107 (2007), s. 1296−1323. open in new tab
  20. Köhler A., Bässler H. Electronic Processes in Organic Semiconductors, Wiley-VCH Verlag GmbH & Co. KGaA, (2015). open in new tab
  21. Pope M., Swenberg Ch.E. Electronic Processes in Organic Crystals, Clarendon Press, New York (1999). open in new tab
  22. Karl N. Charge-Carrier Mobility in Organic Crystals, Organic Electronic Materials, Springer, (2001), s. 283-326. open in new tab
  23. Brütting W. Organic Semiconductors, Encyclopedia of Physics, Wiley-VCH Verlag GmbH & Co. KGaA, (2005), s. 1866-1876. open in new tab
  24. Minemawari H., Yamada T., Matsui H., Tsutsumi J., Haas S., Chiba R., Kumai R., Hasegawa T. Inkjet printing of single-crystal films, Nature, 475 (2011), s. 366-367. open in new tab
  25. Franz M. Raport wewnętrzny projektu pt. Organic Stability Project, KTP Program Merck Chemicals Ltd oraz University of Southampton (2010).
  26. Veres J., Ogier S., Lloyd G. Gate insulators in organic field-effect transistors, Chemistry of Materials, 16 (2004), s. 4543-4555. open in new tab
  27. Hardigree J.F.M., Katz H.E. Through thick and thin: tuning the threshold voltage in organic field-effect transistors, Accounts of Chemical Research, 47 (2014), s. 1369-1377.
  28. Chou Y-H., Chang H-Ch.,Liu Ch-L., Chen W-Ch. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices, Polymer Chemistry, 6 (2015), s. 341-352. open in new tab
  29. Coropceanu V., Cornil J.,Filho D.A.S., Olivier Y., Silbey R., Brédas J.L. Charge transport in organic semiconductors, Chemical Reviews, 107 (2007), s. 926-952. open in new tab
  30. Schroeder R., Majewski L. A., Grell M. A study of the threshold voltage in pentacene organic field-effect transistors, Applied Physics Letters, 83 (2003), s. 3201-3203. open in new tab
  31. Yang R.D., Park J., Colesniuc C.N., Schuller I.K., Royer J.E., Trogler W.C., Kummel A.C. Analyte chemisorption and sensing on n-and-p-channel copper phthalocyanine thin-film transistors, The Journal of Chemical Physics, 130 (2009), s. 164703-8. open in new tab
  32. Huang J., Miragliotta J., Becknell A., Katz H.E. Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection, Journal of the American Chemical Society, 129 (2007), s. 9366-9376. open in new tab
  33. Royer J.E., Kappe E.D., Zhang Ch., Martin D.T., Trogler W.C., Kummel A.C. Organic thin-film transistors for selective hydrogen peroxide and organic peroxide vapor detection, The Journal of Physical Chemistry, 116 (2012), s. 24566-24572. open in new tab
  34. Seo J., Park S., Nam S., Kim H., Kim Y. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch, Scientific Reports, 3 (2013), s. 1-6. open in new tab
  35. Someya T., Dodabalapur A., Gelperin A., Katz H.E., Bao Z. Integration and response of organic electronics with aqueous microfluidics, Langmuir, 18 (2002), s. 5299-5302. open in new tab
  36. Bergveld P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years, Sensors and Actuators B: Chemicals, 88 (2003), s. 1-20. open in new tab
  37. Moss S.D., Johnson C.C., Janata J. Hydrogen, calcium, and potassium ion-sensitive FET transducers: a preliminary report, IEEE Transactions on Biomedical Engineering, 25 (1978), s. 49-54. open in new tab
  38. van der Schoot B.H., Bergveld P. ISFET based enzyme sensors, Biosensors, 3 (1987), s. 161-186. open in new tab
  39. Volotovskya V., Soldatkinb A.P., Shul'gac A.A., Rossokhatya V.K., Strikhaa V.I., El'skayab A.V. Glucose-sensitive ion-sensitive field-effect transistorbased biosensor with additional positively charged membrane: dynamic range extension and reduction of buffer concentration influence on the sensor response, Analytica Chimica Acta, 322 (1996), s. 77-81. open in new tab
  40. Yates D.E., Levine S., Healy T.W. Site-binding model of the electrical double layer at the oxide/water interface, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70 (1974), s. 1807-1818. open in new tab
  41. Osa T. Potentiometric response of lipid modified ISFET, Applied Biochemistry and Biotechnology, 41 (1993), s. 35-40. open in new tab
  42. Madou M., Morrison S. Chemical sensing with solid state devices, Academic Press, 1989. open in new tab
  43. Morf W.E. The principles of ion-selective electrodes and of membrane transport, Volume 2, Elsevier Science, 1981. open in new tab
  44. Bartic C., Palan B., Campitelli A., Borghs G. Monitoring pH with organic-based field- effect transistors, Sensors and Actuators B: Chemical Special Issues 83 (2002), s. 115-122. open in new tab
  45. Bartic C., Campitelli A., Borghs S. Field-effect detection of chemical species with hybrid organic/inorganic transistors, Applied Physics Letters, 82 (2003), s. 475-477. open in new tab
  46. Scarpa G., Idzko A.L., Yadav A., Thalhammer S. Organic ISFET Based on Poly (3-hexylthiophene), Sensors, 10 (2010), s. 2262-2273. open in new tab
  47. Liu J., Agarwal M., Varahramyan K. Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer, Sensors and Actuators B: Chemical, 135 (2008), s. 195-199. open in new tab
  48. Zhang Q., Subramanian V. DNA hybridization detection with organic thin film transistors: Toward fast and disposable DNA microarray chips, Biosensors and Bioelectronics, 22 (2007), s. 3182-3187. open in new tab
  49. Yan F., Moka S.M., Yub J., Chana H.L.W., Yangb M. Label-free DNA sensor based on organic thin film transistors, Biosensors and Bioelectronics, 24 (2009), s. 1241-1245. open in new tab
  50. Khan H.U., Roberts M.E., Johnson O., Förch R., Knoll W., Bao Z. In situ, label-free DNA detection using organic transistor sensors, Advanced Materials, 22 (2010), s. 4452-4456. open in new tab
  51. Roberts M.E., Mannsfeld S.C.B., Stoltenberg R.M., Bao Z. Flexible, plastic transistor- based chemical sensors, Organic Electronics, 10 (2009), s. 377-383. open in new tab
  52. Scarpa G., Idzko A-L., Yadav A., Martin E., Thalhammer S. Toward cheap disposable sensing devices for biological assays, IEEE Transactions On Nanotechnology, 9 (2010), s. 527-532. open in new tab
  53. Sokolov A.N., Tee B.C-K., Bettinger C.J., Tok J.B.-H., Bao Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications, Accounts Of Chemical Research, 45 (2012), s. 361-371. open in new tab
  54. Lee W., Kim D., Rivnay J., Matsuhisa N., Lonjaret T., Yokota T., Yawo H., Sekino M., Malliaras G.G., Someya T. Integration of organic electrochemical and field-effect transistors for ultraflexible, high temporal resolution electrophysiology arrays, Advanced Materials, 28 (2016), 9722-9728. open in new tab
  55. Nawrocki R.A., Matsuhisa N., Yokota T., Someya T. 300-nm imperceptible, ultrafl exible, and biocompatible e-skin fit with tactile sensors and organic transistors, Advanced Materials, 2 (2016), s. 1500452. open in new tab
  56. Carpi F., De Rossi D. Electroactive polymer-based devices for e-textiles in biomedicine, IEEE Transactions On Information Technology In Biomedicine, 9 (2005), s. 295-318. open in new tab
  57. Bonfiglio A., De Rossi D., Kirstein T., Locher I.R., Mameli F., Paradiso R., Vozzi G. Organic field effect transistors for textile applications, IEEE Transactions On Information Technology In Biomedicine, 9 (2005), s. 319-324. open in new tab
  58. Stoppa M., Chiolerio A. Wearable electronics and smart textiles: a critical review, Sensors, 14 (2014), s. 11957-11992. open in new tab
  59. Fitzgerald J.E., Bui E.T.H., Simon N.M., Fenniri H. Artificial nose technology: status and prospects in diagnostics, Trends in Biotechnology, 35 (2017), s. 33-42. open in new tab
Verified by:
Gdańsk University of Technology

seen 238 times

Recommended for you

Meta Tags