Electrocatalytic oxidation of methanol, ethylene glycol and glycerine in alkaline media on TiO2 nanotubes decorated with AuCu nanoparticles for an application in fuel cells - Publication - Bridge of Knowledge

Search

Electrocatalytic oxidation of methanol, ethylene glycol and glycerine in alkaline media on TiO2 nanotubes decorated with AuCu nanoparticles for an application in fuel cells

Abstract

In this work, we present the catalytic and photocatalytic activity of AuCu nanostructures obtained on TiO2 nanotubes toward methanol, ethylene glycol and glycerine oxidation. The electrode material is prepared by anodization of Ti foil, thin AuCu layer sputtering and rapid thermal treatment under argon atmosphere. Scanning electron microscopy images confirmed the presence of ordered tubular architecture of TiO2 as well as nanoparticles formed on the surface of the nanotubes. The electrodes were measured using cyclic voltammetry, linear voltammetry and electrochemical impedance spectroscopy in dark and under illumination. Obtained results show a significant current increase: 20 and 90 times higher current density at ? 0.3 V versus Ag/AgCl/0.1 M KCl after glycol and glycerine addition, respectively. Moreover, a higher current toward alcohol oxidation was registered for thermally annealed samples than for nonannealed ones. Reported studies demonstrate deep insight into the electrical properties of AuCu-modified titania materials.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Authors (5)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MATERIALS SCIENCE no. 57, pages 13345 - 13361,
ISSN: 0022-2461
Language:
English
Publication year:
2022
Bibliographic description:
Lipińska W., Grochowska K., Karczewski J., Coy E., Siuzdak K.: Electrocatalytic oxidation of methanol, ethylene glycol and glycerine in alkaline media on TiO2 nanotubes decorated with AuCu nanoparticles for an application in fuel cells// JOURNAL OF MATERIALS SCIENCE -Vol. 57,iss. 28 (2022), s.13345-13361
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10853-022-07471-7
Sources of funding:
  • COST_FREE
Verified by:
Gdańsk University of Technology

seen 32 times

Recommended for you

Meta Tags