Experimental Evaluation of ND: YAG Laser Parameters and Sample Preparation Methods for Texturing Thin AISI 316L Steel Samples - Publication - Bridge of Knowledge

Search

Experimental Evaluation of ND: YAG Laser Parameters and Sample Preparation Methods for Texturing Thin AISI 316L Steel Samples

Abstract

In mechanical and material engineering, the effect of laser texturing depends on many factors besides device specification, primarily the properties of the materials being processed, and, secondly, the preparation of the sample. Laser texturing of thin (<5 mm) samples is mostly performed utilizing short-pulse lasers, but depending on the power of the laser beam, the process can also be performed by using continuous operation lasers. When using a laser beam to modify the surface layer, special attention should be paid to the surface preparation process. Engraving a shiny metal surface can lead to laser beam dispersion and energy loss. Some materials require special preparation and surface darkening in order to be effectively engraved. In the case of engraving, maximizing the efficiency and repeatability of the process is the key to obtaining the desired properties. The aim of the conducted study was to establish satisfying parameters and a sample preparation method for texturing thin AISI 316L samples. Appropriately selected laser parameters added to proper sample preparation. The sanding, etching, and darkening of the surface layer improved the quality of the weld and eliminated problems such as deformation and spark formation that often occur with raw samples during the texturing process.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Applied Sciences-Basel no. 13,
ISSN: 2076-3417
Language:
English
Publication year:
2023
Bibliographic description:
Kozłowska E., Grabska-Zielińska S.: Experimental Evaluation of ND: YAG Laser Parameters and Sample Preparation Methods for Texturing Thin AISI 316L Steel Samples// Applied Sciences-Basel -Vol. 13,iss. 22 (2023), s.12352-
DOI:
Digital Object Identifier (open in new tab) 10.3390/app132212352
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 83 times

Recommended for you

Meta Tags