Extended phase diagram of RNiC2 family: Linear scaling of the Peierls temperature - Publication - Bridge of Knowledge

Search

Extended phase diagram of RNiC2 family: Linear scaling of the Peierls temperature

Abstract

Physical properties for the late-lanthanide-based RNiC2 (R = Dy, Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW = 284, 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the RNiC2 family.

Citations

  • 2 4

    CrossRef

  • 0

    Web of Science

  • 2 2

    Scopus

Cite as

Full text

download paper
downloaded 66 times
Publication version
Accepted or Published Version
License
Copyright (2018 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL REVIEW B no. 97, edition 4, pages 1 - 6,
ISSN: 2469-9950
Language:
English
Publication year:
2018
Bibliographic description:
Roman M., Strychalska-Nowak J., Klimczuk T., Kolincio K.: Extended phase diagram of RNiC2 family: Linear scaling of the Peierls temperature// PHYSICAL REVIEW B. -Vol. 97, iss. 4 (2018), s.1-6
DOI:
Digital Object Identifier (open in new tab) 10.1103/physrevb.97.041103
Bibliography: test
  1. V. Thampy, X. M. Chen, Y. Cao, C. Mazzoli, A. M. Barbour, W. Hu, H. Miao, G. Fabbris, R. D. Zhong, G. D. Gu, J. M. open in new tab
  2. Tranquada, I. K. Robinson, S. B. Wilkins, and M. P. M. Dean, Phys. Rev. B 95, 241111 (2017). open in new tab
  3. S. Caprara, C. Di Castro, G. Seibold, and M. Grilli, Phys. Rev. B 95, 224511 (2017). open in new tab
  4. E. Fawcett, Rev. Mod. Phys. 60, 209 (1988). open in new tab
  5. V. L. R. Jacques, C. Laulhé, N. Moisan, S. Ravy, and D. Le Bolloc'h, Phys. Rev. Lett. 117, 156401 (2016). open in new tab
  6. X. Xu, A. F. Bangura, J. G. Analytis, J. D. Fletcher, M. M. J. French, N. Shannon, J. He, S. Zhang, D. Mandrus, R. Jin, and N. E. Hussey, Phys. Rev. Lett. 102, 206602 (2009). open in new tab
  7. J. Chang, E. Blackburn, O. Ivashko, A. T. Holmes, N. B. Christensen, M. Húcker, R. Liang, D. A. Bonn, W. N. Hardy, U. Rütt, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Commun. 7, 11494 (2016). open in new tab
  8. D. Graf, E. S. Choi, J. S. Brooks, M. Matos, R. T. Henriques, and M. Almeida, Phys. Rev. Lett. 93, 076406 (2004). open in new tab
  9. L. E. Winter, J. S. Brooks, P. Schlottmann, M. Almeida, S. Benjamin, and C. Bourbonnais, Europhys. Lett. 103, 37008 (2013). open in new tab
  10. K. Murata, Y. Fukumoto, K. Yokogawa, W. Kang, R. Takaoka, R. Tada, H. Hirayama, J. S. Brooks, D. Graf, H. Yoshino, T. Sasaki, and R. Kato, Physica B 460, 241 (2015), special issue on Electronic Crystals (ECRYS-2014). open in new tab
  11. P. C. Lalngilneia, A. Thamizhavel, S. Ramakrishnan, and D. Pal, J. Phys.: Conf. Ser. 592, 012094 (2015). open in new tab
  12. S. van Smaalen, M. Shaz, L. Palatinus, P. Daniels, F. Galli, G. J. Nieuwenhuys, and J. A. Mydosh, Phys. Rev. B 69, 014103 (2004). open in new tab
  13. F. Galli, S. Ramakrishnan, T. Taniguchi, G. J. Nieuwenhuys, J. A. Mydosh, S. Geupel, J. Lüdecke, and S. van Smaalen, Phys. Rev. Lett. 85, 158 (2000). open in new tab
  14. F. Galli, R. Feyerherm, R. W. A. Hendrikx, E. Dudzik, G. J. Nieuwenhuys, S. Ramakrishnan, S. D. Brown, S. van Smaalen, and J. A. Mydosh, J. Phys.: Condens. Matter 14, 5067 (2002). open in new tab
  15. Z. Hossain, M. Schmidt, W. Schnelle, H. S. Jeevan, C. Geibel, S. Ramakrishnan, J. A. Mydosh, and Y. Grin, Phys. Rev. B 71, 060406 (2005). open in new tab
  16. M. Leroux, P. Rodière, and C. Opagiste, J. Supercond. Novel Magn. 26, 1669 (2013). open in new tab
  17. Y. Singh, D. Pal, and S. Ramakrishnan, Phys. Rev. B 70, 064403 (2004). open in new tab
  18. N. S. Sangeetha, A. Thamizhavel, C. V. Tomy, S. Basu, A. M. Awasthi, S. Ramakrishnan, and D. Pal, Phys. Rev. B 86, 024524 (2012). open in new tab
  19. Y. K. Kuo, K. M. Sivakumar, T. H. Su, and C. S. Lue, Phys. Rev. B 74, 045115 (2006). open in new tab
  20. J. N. Kim, C. Lee, and J.-H. Shim, New J. Phys. 15, 123018 (2013). open in new tab
  21. G. Prathiba, I. Kim, S. Shin, J. Strychalska, T. Klimczuk, and T. Park, Sci. Rep. 6, 26530 (2016). open in new tab
  22. D. Ahmad, B. H. Min, G. I. Min, S.-I. Kimura, J. Seo, and Y. S. Kwon, Phys. Status Solidi B 252, 2662 (2015). open in new tab
  23. S. Shimomura, C. Hayashi, N. Hanasaki, K. Ohnuma, Y. Kobayashi, H. Nakao, M. Mizumaki, and H. Onodera, Phys. Rev. B 93, 165108 (2016). open in new tab
  24. S. Shimomura, C. Hayashi, G. Asaka, N. Wakabayashi, M. Mizumaki, and H. Onodera, Phys. Rev. Lett. 102, 076404 (2009). open in new tab
  25. A. Wölfel, L. Li, S. Shimomura, H. Onodera, and S. van Smaalen, Phys. Rev. B 82, 054120 (2010). open in new tab
  26. N. Hanasaki, K. Mikami, S. Torigoe, Y. Nogami, S. Shimomura, M. Kosaka, and H. Onodera, J. Phys.: Conf. Ser. 320, 012072 (2011). open in new tab
  27. N. Hanasaki, S. Shimomura, K. Mikami, Y. Nogami, H. Nakao, and H. Onodera, Phys. Rev. B 95, 085103 (2017). open in new tab
  28. K. K. Kolincio, K. Górnicka, M. J. Winiarski, J. Strychalska- Nowak, and T. Klimczuk, Phys. Rev. B 94, 195149 (2016). open in new tab
  29. H. Lei, K. Wang, and C. Petrovic, J. Phys.: Condens. Matter 29, 075602 (2017). open in new tab
  30. N. Yamamoto, R. Kondo, H. Maeda, and Y. Nogami, J. Phys. Soc. Jpn. 82, 123701 (2013). open in new tab
  31. H. Michor, S. Steiner, A. Schumer, M. Hembara, V. Levytskyy, V. Babizhetskyy, and B. Kotur, J. Magn. Magn. Mater. 441, 69 (2017). open in new tab
  32. M. Murase, A. Tobo, H. Onodera, Y. Hirano, T. Hosaka, S. Shimomura, and N. Wakabayashi, J. Phys. Soc. Jpn. 73, 2790 (2004). open in new tab
  33. J. Laverock, T. D. Haynes, C. Utfeld, and S. B. Dugdale, Phys. Rev. B 80, 125111 (2009). open in new tab
  34. K. K. Kolincio, M. Roman, M. J. Winiarski, J. Strychalska- Nowak, and T. Klimczuk, Phys. Rev. B 95, 235156 (2017). open in new tab
  35. B. Wiendlocha, R. Szczȩśniak, A. P. Durajski, and M. Muras, Phys. Rev. B 94, 134517 (2016). open in new tab
  36. W. H. Lee, H. K. Zeng, Y. D. Yao, and Y. Y. Chen, Physica C 266, 138 (1996). open in new tab
  37. V. K. Pecharsky, L. L. Miller, and K. A. Gschneidner, Phys. Rev. B 58, 497 (1998). open in new tab
  38. H. Onodera, Y. Koshikawa, M. Kosaka, M. Ohashi, H. Yamauchi, and Y. Yamaguchi, J. Magn. Magn. Mater. 182, 161 (1998). open in new tab
  39. See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.97.041103 for the results of powder x-ray diffraction experiment. open in new tab
  40. P. Kotsanidis, J. Yakinthos, and E. Gamari-Seale, J. Less- Common Met. 152, 287 (1989). open in new tab
  41. W. Schäfer, G. Will, J. Yakinthos, and P. Kotsanidis, J. Alloys Compd. 180, 251 (1992). open in new tab
  42. H. Onodera, M. Ohashi, H. Amanai, S. Matsuo, H. Yamauchi, Y. Yamaguchi, S. Funahashi, and Y. Morii, J. Magn. Magn. Mater. 149, 287 (1995). open in new tab
  43. Y. Koshikawa, H. Onodera, M. Kosaka, H. Yamauchi, M. Ohashi, and Y. Yamaguchi, J. Magn. Magn. Mater. 173, 72 (1997). open in new tab
  44. Y. Long, C. Z. Zheng, J. L. Luo, Z. J. Cheng, and Y. S. He, J. Appl. Phys. 89, 3523 (2001). open in new tab
  45. W. L. McMillan, Phys. Rev. B 12, 1187 (1975). open in new tab
  46. B. Becker, N. G. Patil, S. Ramakrishnan, A. A. Menovsky, G. J. Nieuwenhuys, J. A. Mydosh, M. Kohgi, and K. Iwasa, Phys. Rev. B 59, 7266 (1999). open in new tab
  47. R. Tediosi, F. Carbone, A. B. Kuzmenko, J. Teyssier, D. van der Marel, and J. A. Mydosh, Phys. Rev. B 80, 035107 (2009). open in new tab
  48. M. H. Jung, H. C. Kim, A. Migliori, F. Galli, and J. A. Mydosh, Phys. Rev. B 68, 132102 (2003). open in new tab
  49. K. Kolincio, O. Pérez, S. Hébert, P. Fertey, and A. Pautrat, Phys. Rev. B 93, 235126 (2016). open in new tab
  50. F. Behroozi, G. W. Crabtree, S. A. Campbell, and D. G. Hinks, Phys. Rev. B 27, 6849 (1983). open in new tab
  51. N. Hanasaki, Y. Nogami, M. Kakinuma, S. Shimomura, M. Kosaka, and H. Onodera, Phys. Rev. B 85, 092402 (2012). open in new tab
  52. K. K. Kolincio, M. Roman, T. Miruszewski, J. Strychalska- Nowak, and T. Klimczuk (unpublished). open in new tab
  53. P. Roussel, O. Pérez, and P. Labbé, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 57, 603 (2001). open in new tab
  54. A. Rötger, J. Lehmann, C. Schlenker, J. Dumas, J. Marcus, Z. S. Teweldemedhin, and M. Greenblatt, Europhys. Lett. 25, 23 (1994). open in new tab
  55. C. Schlenker, C. Le Touze, C. Hess, A. Rötger, J. Du- mas, J. Marcus, M. Greenblatt, Z. S. Teweldemedhin, A. Ottolenghi, P. Foury, and J. P. Pouget, Synth. Met. 70, 1263 (1995). open in new tab
  56. Y. K. Kuo, F. H. Hsu, H. H. Li, H. L. Huang, C. W. Huang, C. S. Lue, and H. D. Yang, Phys. Rev. B 67, 195101 (2003). open in new tab
Verified by:
Gdańsk University of Technology

seen 175 times

Recommended for you

Meta Tags