Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis - Publication - Bridge of Knowledge

Search

Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis

Abstract

One of the most important information about polyesters is their thermal stability and phase transition tem- peratures. These characteristics give information about the promising behavior of the polyester during proces- sing. In this work, linear bio-based polyester polyols were prepared with the use of succinic acid and 1.3- propanediol (both with natural origin). As a polycondensation catalyst was used tetraisopropyl orthotitanate (TPT), which different amount was employed. The thermogravimetric analysis allowed to observe high thermal stability and one step of the thermal decomposition. This analysis affirmed also that the catalyst content did not influence the thermal degradation characteristics of the prepared polyols. Nevertheless, it has huge importance in the context of thermal degradation kinetics. It was determined with the use of Ozawa, Flynn, and Wall and Kissinger's methods to verifying catalyst impact on the thermal degradation kinetics. Moreover, probable me- chanism of the prepared bio-based polyols thermal degradation was proposed based on the QMS results.

Citations

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Cite as

Full text

download paper
downloaded 202 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
POLYMER DEGRADATION AND STABILITY no. 151, pages 90 - 99,
ISSN: 0141-3910
Language:
English
Publication year:
2018
Bibliographic description:
Parcheta P., Koltsov I., Datta J.: Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis// POLYMER DEGRADATION AND STABILITY. -Vol. 151, (2018), s.90-99
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.polymdegradstab.2018.03.002
Bibliography: test
  1. A. Prociak, G. Rokicki, J. Ryszkowska, Materiały poliuretanowe, Wydawnictwo Naukowe PWN, Warszawa, 2014.
  2. M. Szycher, Handbook of Polyurethanes, Second Edi, CRC Press, Boca Raton, FL, USA, 1999. open in new tab
  3. M. Ionescu, Chemistry and Technology of Polyols for Polyurethane, First Edit, Rapra Technology Limited, United Kingdom, 2005. doi:10.1002/pi.2159. open in new tab
  4. P. Król, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Prog. Mater. Sci. 52 (2007) 915-1015. doi:10.1016/j.pmatsci.2006.11.001. open in new tab
  5. Y.D. Kim, S.C. Kim, Effect of chemical structure on the biodegradation of polyurethanes under composting conditions, Polym. Degrad. Stab. 62 (1998) 343-352. doi:10.1016/S0141- 3910(98)00017-2. open in new tab
  6. M. Rutkowska, K. Krasowska, A. Heimowska, I. Steinka, H. Janik, Degradation of polyurethanes in sea water, Polym. Degrad. Stab. 76 (2002) 233-239. doi:10.1016/S0141- 3910(02)00019-8. open in new tab
  7. R. Miller, Evaluating the Properties and Performance of Susterra® 1, 3 Propanediol and Biosuccinium TM Sustainable Succinic Acid in TPU Applications, in: CPI Polyurethanes 2012 open in new tab
  8. Tech. Conf., 2012: pp. 1-19. http://www.reverdia.com/wp-content/uploads/Article-PUMI- Biosuccinium_and_Susterra_03-2013.pdf. open in new tab
  9. P. Parcheta, J. Datta, Environmental impact and industrial development of biorenewable resources for polyurethanes, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1986-2016. doi:10.1080/10643389.2017.1400861. open in new tab
  10. G.Z. Papageorgiou, D.N. Bikiaris, Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study, Polymer (Guildf). 46 (2005) 12081-12092. doi:10.1016/j.polymer.2005.10.073. open in new tab
  11. D.N. Bikiaris, G.Z. Papageorgiou, D.S. Achilias, Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s, Polym. Degrad. Stab. 91 (2006) 31-43. doi:10.1016/j.polymdegradstab.2005.04.030. open in new tab
  12. Z. Qiu, M. Komura, T. Ikehara, T. Nishi, DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate), Polymer (Guildf). 44 (2003) 7781-7785. doi:10.1016/j.polymer.2003.10.045. open in new tab
  13. Y. Liu, E. Ranucci, M.S. Lindblad, A.C. Albertsson, New biodegradable polymers from renewable sources -Segmented copolyesters of poly(1,3-propanediol succinate) and poly(ethylene glycol), J. Bioact. Compat. Polym. 17 (2002) 209-219. doi:10.1106/088391102026318. open in new tab
  14. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate), Polym. Degrad. Stab. 91 (2006) 60-68. doi:10.1016/j.polymdegradstab.2005.04.028. open in new tab
  15. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study, Thermochim. Acta. 435 (2005) 142-150. doi:10.1016/j.tca.2005.05.011. open in new tab
  16. T. Zorba, K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Synthesis , characterization and thermal degradation mechanism of three poly ( alkylene adipate ) s : Comparative study, Polym. Degrad. Stab. 92 (2007) 222-230. doi:10.1016/j.polymdegradstab.2006.11.009. open in new tab
  17. E. Kicko-Walczuk, Badania nad mechnizmem rozkładu termicznego nienasyconych żywic poliestrowych o zmniejszonej palności, Polimery. 48 (2003) 351-358. open in new tab
  18. K. Chrissafis, K.M. Paraskevopoulos, G.Z. Papageorgiou, D.N. Bikiaris, Thermal decomposition of poly ( propylene sebacate ) and poly ( propylene azelate ) biodegradable polyesters : Evaluation of mechanisms using TGA , FTIR and GC / MS, J. Anal. Appl. Pyrolysis. 92 (2011) 123-130. doi:10.1016/j.jaap.2011.05.001. open in new tab
  19. D.N. Bikiaris, K. Chrissafis, K.M. Paraskevopoulos, Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysis -gas chromatography -mass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst, Polym. Degrad. Stab. 92 (2007) 525-536. doi:10.1016/j.polymdegradstab.2007.01.022. open in new tab
  20. M.J. Starink, The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods, Thermochim. Acta. 404 (2003) 163- 176. doi:10.1016/S0040-6031(03)00144-8. open in new tab
  21. A.A. Rowe, M. Tajvidi, D.J. Gardner, Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA), J. Therm. Anal. Calorim. 126 (2016) 1371-1386. doi:10.1007/s10973-016-5791-1. open in new tab
  22. Z. Terzopoulou, E. Karakatsianopoulou, N. Kasmi, M. Majdoub, G.Z. Papageorgiou, D.N. open in new tab
  23. Bikiaris, Effect of catalyst type on recyclability and decomposition mechanism of poly(ethylene furanoate) biobased polyester, J. Anal. Appl. Pyrolysis. 126 (2017) 357-370. doi:10.1016/j.jaap.2017.05.010. open in new tab
  24. Z. Terzopoulou, V. Tsanaktsis, M. Nerantzaki, D.S. Achilias, T. Vaimakis, G.Z. Papageorgiou, D.N. Bikiaris, Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols, J. Anal. open in new tab
  25. Appl. Pyrolysis. 117 (2016) 162-175. doi:10.1016/j.jaap.2015.11.016. open in new tab
  26. V. Tsanaktsis, E. Vouvoudi, G.Z. Papageorgiou, D.G. Papageorgiou, K. Chrissafis, D.N. open in new tab
  27. Bikiaris, Thermal degradation kinetics and decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and low molecular weight aliphatic diols, J. Anal. Appl. Pyrolysis. 112 (2015) 369-378. doi:10.1016/j.jaap.2014.12.016. open in new tab
  28. K. Chrissafis, E. Roumeli, K.M. Paraskevopoulos, N. Nianias, D.N. Bikiaris, Effect of different nanoparticles on thermal decomposition of poly ( propylene sebacate )/ nanocomposites : Evaluation of mechanisms using TGA and TG -FTIR -GC / MS, J. Anal. Appl. Pyrolysis. 96 (2012) 92-99. doi:10.1016/j.jaap.2012.03.010. open in new tab
  29. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly ( ethylene succinate ), Thermochim. Acta. 440 (2006) 166-175. doi:10.1016/j.tca.2005.11.002. open in new tab
  30. P. Parcheta, J. Datta, Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts, J. Therm. Anal. Calorim. 130 (2017) 197-206. doi:10.1007/s10973-017-6376-3. open in new tab
  31. https://www.nist.gov/services-resources, Natl. Inst. Stand. Technol. (n.d.). open in new tab
Verified by:
Gdańsk University of Technology

seen 142 times

Recommended for you

Meta Tags