Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates - Publication - Bridge of Knowledge

Search

Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates

Abstract

The results of heat capacity measurements for the lanthanum orthoniobate substituted with 10, 20 and 30 mol% of antimony (LaNb0.9Sb0.1O4, LaNb0.8Sb0.2O4 and LaNb0.7Sb0.3O4) are presented and discussed. Temperature dependence of low temperature heat capacity was analyzed within the Debye and Einstein models. The Debye temperature decreased, whereas the Einstein temperature increased with antimony content. The decrease of the Debye temperature with increasing antimony content was correlated with decreasing scheelite–fergusonite transition temperature. The increase of the Einstein temperature of LaSbxNb1−xO4 with increasing antimony content may indicate increasing frequency of optical vibrations of Nb(Sb)–O4−2 polyhedra relative to La3+ cations. Using the heat capacity data, standard entropies of the phases were calculated and combined with previously measured enthalpies of formation to obtain Gibbs energies of formation. Standard thermodynamic properties were tabulated

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 173 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CERAMICS INTERNATIONAL no. 42, edition 6, pages 7054 - 7059,
ISSN: 0272-8842
Publication year:
2016
Bibliographic description:
Mielewczyk-Gryń A., Wachowski S., Strychalska-Nowak J., Zagórski K., Klimczuk T., Navrotsky A., Gazda M.: Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates// CERAMICS INTERNATIONAL. -Vol. 42, iss. 6 (2016), s.7054-7059
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ceramint.2016.01.093
Bibliography: test
  1. W.M. Kriven, P. Sarin, L.F. Siah, Phase transformations in rare earth niobates, solid-solid phase transform, Inorg. Mater. (2005) 1015-1022.
  2. F. Vullum, F. Nitsche, S.M. Selbach, T. Grande, Solid solubility and phase transitions in the system LaNb 1 À x Ta x O 4 , J. Solid State Chem. 181 (2008) 2580-2585, http://dx.doi.org/10.1016/j.jssc.2008.06.032. open in new tab
  3. A.B. Santibáñez-Mendieta, E. Fabbri, S. Licoccia, E. Traversa, Tailoring phase stability and electrical conductivity of Sr 0.02 La 0.98 Nb 1-x Ta x O 4 for intermediate temperature fuel cell proton conducting electrolytes, Solid State Ion. 216 (2012) 6-10, http://dx.doi.org/10.1016/j.ssi.2011.09.019. open in new tab
  4. S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, Effect of isovalent substitution on microstructure and phase transition of LaNb 1À x M x O 4 (M¼ Sb, V or ta; x¼ 0.05 to 0.3), J. Solid State Chem. 219 (2014) 201-209 〈http://www.sciencedirect.com/science/article/pii/S0022459614003466〉. open in new tab
  5. A. Mielewczyk-Gryn, K. Gdula, T. Lendze, B. Kusz, M. Gazda, Nano- and microcrystals of doped niobates, Cryst. Res. Technol. 45 (2010) 1225-1228, http://dx.doi.org/10.1002/crat.201000378. open in new tab
  6. A. Mielewczyk-Gryn, K. Gdula-Kasica, B. Kusz, M. Gazda, High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho-niobate, Ceram. Int. 39 (2013) 4239-4244, http://dx.doi.org/10.1016/j.ceramint.2012.09.102. open in new tab
  7. A. Mielewczyk-Gryn, S. Wachowski, K.I. Lilova, X. Guo, M. Gazda, A. Navrotsky, Influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate, Ceram. Int. 41 (2015) 2128-2133, http://dx.doi.org/10.1016/j.ceramint.2014.10.010. open in new tab
  8. A.D. Brandaõ, I. Antunes, J.R. Frade, J. Torre, V.V. Kharton, D.P. Fagg, Enhanced Low-temperature proton conduction in Sr 0.02 La 0.98 NbO 4 À δ by scheelite phase retention, Chem. Mater. 22 (2010) 6673-6683 http://dx.doi.org/10.1021/cm102705e. open in new tab
  9. A. Mielewczyk-Gryn, S. Wachowski, K. Zagórski, P. Jasiński, M. Gazda, Characterization of magnesium doped lanthanum orthoniobate synthe- sized by molten salt route, Ceram. Int. 41 (2015) 7847-7852, http://dx.doi.org/10.1016/j.ceramint.2015.02.121. open in new tab
  10. P. Sarin, R.W. Hughes, D.R. Lowry, Z.D. Apostolov, W.M. Kriven, High-temperature properties and ferroelastic phase transitions in rare- earth niobates (LnNbO 4 ), J. Am. Ceram. Soc. (2014) 3319 open in new tab
  11. http://dx.doi.org/10.1111/jace.13095. open in new tab
  12. M.V. Nevitt, G.S. Knapp, Phonon properties of vanadium-substituted lanthanum niobate derived from heat-capacity measurements, J. Phys. Chem. Solids. 47 (1986) 501-505, http://dx.doi.org/10.1016/0022-3697 (86)90049-1. open in new tab
  13. K. Parlinski, Y. Hashi, S. Tsunekawa, Y. Kawazoe, Computer simulation of ferroelastic phase transition in LaNbO 4 , J. Mater. Res. 12 (1997) 2428-2437, http://dx.doi.org/10.1557/JMR.1997.0321. open in new tab
  14. A.T. Aldred, S.-K. Chan, M.H. Grimsditch, M.V. Nevitt, Displacive phase transformation in vanadium-substituted lanthanum niobate, MRS Proc. 24 (1983). open in new tab
  15. A. Senyshyn, H. Kraus, V. Mikhailik, L. Vasylechko, M. Knapp, Thermal properties of CaMoO 4 : lattice dynamics and synchrotron powder diffrac- tion studies, Phys. Rev. B. 73 (2006) 1-9, http://dx.doi.org/10.1103/ PhysRevB.73.014104. open in new tab
  16. S.P.S. Porto, J.F. Scott, Raman spectra of CaWO 4 , SrWO 4 , CaMoO 4 , and SrMoO 4 , Phys. Rev. 157 (1967) 716-719, http://dx.doi.org/10.1103/ PhysRev.157.716. open in new tab
Verified by:
Gdańsk University of Technology

seen 145 times

Recommended for you

Meta Tags