Historical carpentry corner log joints—Numerical analysis within stochastic framework - Publication - Bridge of Knowledge

Search

Historical carpentry corner log joints—Numerical analysis within stochastic framework

Abstract

The paper presents the results of numerical analysis performed on historical, traditional carpentry corner logjoints of two basic topologies: the short-corner dovetail connection and the saddle notch connection. These types of carpentry joints are commonly used in currently preserved objects of wooden architecture. All connections have been modelled in pinewood, which has been defined in the Finite Element software MSC.Marc/Mentat as an orthotropic material. The numerical calculations have been carried out for two types of connections with two different boundary conditions and load types. The contact phenomenon between the individual elements of theconnections has been taken into account. The main purpose of the research is to select the most damage-resistanttype of connection and to determine the stress distributions on the contact surfaces, which demines the damageareas. However, a lot of uncertainties appear in the studied models, e.g. due to the natural variability of the material properties of wood and the uncertainty of friction coefficient. Therefore the uncertainty quantification and global sensitivity analysis has been performed in order to include these uncertainties and study their effect on variation of the mechanical response of the connections. A regression-based non-intrusive polynomial chaos expansion method has been employed to complete the task.The state-of-the-art knowledge about the damage-prone zones in the considered connections is immensely important since many wooden buildings, mostly historical, require maintenance, renovation and the reinforcement of existing, especially historical elements. On the contrary, there are not many results of related research published yet.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 75 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ENGINEERING STRUCTURES no. 176, pages 64 - 73,
ISSN: 0141-0296
Language:
English
Publication year:
2018
Bibliographic description:
Kłosowski P., Lubowiecka I., Pestka A., Szepietowska K.: Historical carpentry corner log joints—Numerical analysis within stochastic framework// ENGINEERING STRUCTURES. -Vol. 176, (2018), s.64-73
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.engstruct.2018.08.095
Bibliography: test
  1. Green DW, Winandy JE, Kretschmann DE. Wood handbook-wood as an en- gineering material. Madison; 1999.
  2. Nowak TP, Jasieńko J, Hamrol-Bielecka K. In situ assessment of structural timber using the resistance drilling method-evaluation of usefulness. Constr Build Mater 2016;102:403-15. open in new tab
  3. Michniewicz W. Konstrukcje drewniane (Wooden construction). Arkady, Warsaw; 1958.
  4. Sonderegger W, Kránitz K, Bues C-T, Niemz P. Aging effects on physical and me- chanical properties of spruce, fir and oak wood. J Cult Heritage 2015;16(6):883-9. open in new tab
  5. Morales-Conde MJ, Machado JS. Evaluation of cross-sectional variation of timber bending modulus of elasticity by stress waves. Constr Build Mater 2017;134:617-25. open in new tab
  6. Jasieńko J, Nowak T, Karolak A. Historyczne złącza ciesielskie (Historical carpentry joints). J Heritage Conserv 2014;40:58-82.
  7. Sangree RH, Schafer B. Experimental and numerical analysis of a halved and tabled traditional timber scarf joint. Constr Build Mater 2009;23(2):615-24. open in new tab
  8. Aira J, Íñiguez-González G, Guaita M, Arriaga F. Load carrying capacity of halved and tabled tenoned timber scarf joint. Mater Struct 2016;49(12):5343-55. open in new tab
  9. Palma P, Garcia H, Ferreira J, Appleton J, Cruz H. Behaviour and repair of carpentry connections-rotational behaviour of the rafter and tie beam connection in timber roof structures. J Cult Heritage 2012;13(3):S64-73. open in new tab
  10. Jasieńko J, Engel L, Rapp P. Study of stresses in historical carpentry joints by photoelasticity modelling. In: Lourenço editor. Structural analysis of historical constructions, possibilities of numerical and experimental techniques. New Delhi: Macmillan India Ltd.; 2006.
  11. Jasieńko J, Kardysz M. Deformation and strength criteria in assessing mechanical behaviour of joints in historic timber structures. In: Proceedings of the 16th inter- national conference: from material to structure -mechanical behaviour and failures of the timber structures. ICOMOS international wood committee, no; November, 2007. p. 218-30. open in new tab
  12. Rajczyk M, Jończyk D. Analiza numeryczna belki drewnianej (Numerical analysis of timber beam). Sci Pap Czestochowa Univ Technol 2014;20:231-9.
  13. Trochonowicz M, Kołodziejczuk N. Wpływ temperatury, wilgotności i kierunku badań na wartość współczynnika przewodności cieplnej λ w różnych gatunkach drewna (The impact of temperature, humidity and the direction of analysis on thermal conductivity λ in different types of wood). Budownictwo i Architektura 2015;14(4):149-56. open in new tab
  14. Kozakiewicz P. Effects of temperature and humidity on the compressive strength along fibres selected types of wood of varying density and anatomical structure. Warsaw: SGGW Publisher; 2010. open in new tab
  15. Villar J, Guaita M, Vidal P, Arriaga F. Analysis of the stress state at the cogging joint in timber structures. Biosyst Eng 2007;96(1):79-90. open in new tab
  16. Schmidt J, Kaliske M. Models for numerical failure analysis of wooden structures. Eng Struct 2009;31(2):571-9. open in new tab
  17. Calderoni C, De Matteis G, Giubileo C, Mazzolani F. Experimental correlations between destructive and non-destructive tests on ancient timber elements. Eng Struct 2010;32(2):442-8. open in new tab
  18. Calderoni C, De Matteis G, Giubileo C, Mazzolani F. Flexural and shear behaviour of ancient wooden beams: experimental and theoretical evaluation. Eng Struct 2006;28(5):729-44. open in new tab
  19. Armesto J, Lubowiecka I, Ordóñez C, Rial FI. FEM modeling of structures based on close range digital photogrammetry. Automat Constr 2009;18(5):559-69. open in new tab
  20. Humbert J, Boudaud C, Baroth J, Hameury S, Daudeville L. Joints and wood shear walls modelling I: constitutive law, experimental tests and FE model under quasi- static loading. Eng Struct 2014;65:52-61. open in new tab
  21. Boudaud C, Humbert J, Baroth J, Hameury S, Daudeville L. Joints and wood shear walls modelling II: experimental tests and FE models under seismic loading. Eng Struct 2015;101:743-9. open in new tab
  22. Sørensen JD. Framework for robustness assessment of timber structures. Eng Struct 2011;33(11):3087-92. open in new tab
  23. Lourenço PB, Sousa HS, Brites RD, Neves LC. In situ measured cross section geo- metry of old timber structures and its influence on structural safety. Mater Struct 2013;46(7):1193-208. open in new tab
  24. Brites RD, Neves LC, Machado JS, Lourenço PB, Sousa HS. Reliability analysis of a timber truss system subjected to decay. Eng Struct 2013;46:184-92. open in new tab
  25. Stefanou G. The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 2009;198(9-12):1031-51. open in new tab
  26. Kandler G, Füssl J. A probabilistic approach for the linear behaviour of glued la- minated timber. Eng Struct 2017;148:673-85. open in new tab
  27. Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 2001;55(1-3):271-80. open in new tab
  28. Hristov P, DiazDelaO F, Flores ES, Guzmán C, Farooq U. Probabilistic sensitivity analysis to understand the influence of micromechanical properties of wood on its macroscopic response. Compos Struct 2017;181:229-39. open in new tab
  29. Klein A, Grabner M. Analysis of construction timber in rural Austria: wooden log walls. Int J Archit Heritage 2015;9(5):553-63. open in new tab
  30. Mleczek A, Kłosowski P. Numerical analysis of the carpentry joints applied in the traditional wooden structures. In: Advances in mechanics: theoretical, computa- tional and interdisciplinary issues: proceedings of the 3rd polish congress of me- chanics (PCM) and 21st international conference on computer methods in me- chanics (CMM), Gdansk, Poland, 8-11 September 2015. CRC Press; 2016. p. 409. open in new tab
  31. Bedon C, Rinaldin G, Fragiacomo M. Non-linear modelling of the in-plane seismic behaviour of timber Blockhaus log-walls. Eng Struct 2015;91:112-24. open in new tab
  32. Grossi P, Sartori T, Giongo I, Tomasi R. Analysis of timber log-house construction system via experimental testing and analytical modelling. Constr Build Mater 2016;102:1127-44. open in new tab
  33. Nowak TP, Jasieńko J, Czepiżak D. Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips. Constr Build Mater 2013;40:197-206. open in new tab
  34. Phleps H. Holzbaukunst de Blockbau, Karlsruhe; 1942.
  35. Cielątkowska R. Translocatio. Przeniesienie drewnianych świątyń trzech obrządków (Translocatio Transfer of wooden temples of the three religions).
  36. Berveiller M, Sudret B, Lemaire M. Stochastic finite element: a non intrusive ap- proach by regression. Eur J Comput Mech/Revue Européenne de Mécanique Numérique 2006;15(1-3):81-92. open in new tab
  37. Kopkowicz F. Ciesielstwo polskie (Polish carpentry). Arkady, Warsaw; 1958. open in new tab
  38. Kyzioł L. Zaste¸pcze stałe materiałowe drewna konstrukcyjnego modyfikowanego powierzchniowo PMM (Substitute material parameters of structural wood with surface modification PMM). In: Scientific papers of Polish Naval Academy, vol. 1, Gdynia; 2005. p. 69-82.
  39. JCSS. Probabilistic Model. Joint committee on structural safety. < www.jcss. ethz.ch > . open in new tab
  40. Blau PJ. The significance and use of the friction coefficient. Tribol Int 2001;34(9):585-91. open in new tab
  41. McKenzie W, Karpovich H. The frictional behaviour of wood. Wood Sci Technol 1968;2(2):139-52. open in new tab
  42. Parisi MA, Piazza M. Mechanics of plain and retrofitted traditional timber con- nections. J Struct Eng 2000;126(12):1395-403. open in new tab
  43. Xu M, Li L, Wang M, Luo B. Effects of surface roughness and wood grain on the friction coefficient of wooden materials for wood-wood frictional pair. Tribol Trans 2014;57(5):871-8. open in new tab
  44. Blatman G, Sudret B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Syst Saf 2010;95(11):1216-29. open in new tab
  45. Zein S, Colson B, Glineur F. An efficient sampling method for regression-based polynomial chaos expansion. Commun Comput Phys 2013;13(4):1173-88. open in new tab
  46. Szepietowska K, Magnain B, Lubowiecka I, Florentin E. Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling. Struct Multidiscipl Optimiz 2018;57(3):1391-409. open in new tab
  47. Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 2008;93(7):964-79. open in new tab
  48. Crestaux T, Le Maître O, Martinez J-M. Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 2009;94(7):1161-72. open in new tab
  49. Parisi MA, Cordié C. Mechanical behavior of double-step timber joints. Constr Build Mater 2010;24(8):1364-71. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 191 times

Recommended for you

Meta Tags