How green are ionic liquids? – A multicriteria decision analysis approach - Publication - Bridge of Knowledge

Search

How green are ionic liquids? – A multicriteria decision analysis approach

Abstract

Due to various desirable physicochemical properties, ionic liquids (ILs) are still gaining in popularity. ILs have been recurrently considered green solvents. However, environmental, health and safety assessments of ILs have raised certain doubts about their benignness, and their greenness status is currently unclear. To clarify the situation on their greenness, we perform a comprehensive assessment of more than 300 commercially available ILs. We apply multicriteria decision analysis, the tool that allows ranking many alternatives according to relevant criteria. They are toxicity towards various organisms, biodegradability, hazard statements and precautionary measures during their handling. We incorporated organic solvents to rankings, as their greenness is better described, so they serve as greenness reference points. The ranking results obtained considering the whole set of criteria show that ILs are placed between recommended polar solvents and problematic/undesirable non polar organic solvents in terms of greenness. However, the exclusion of toxicity data due to unavailability of endpoints results in assessment of ILs as greener than most of organic solvents.

Citations

  • 9 2

    CrossRef

  • 0

    Web of Science

  • 8 4

    Scopus

Cite as

Full text

download paper
downloaded 67 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY no. 174, pages 455 - 458,
ISSN: 0147-6513
Language:
English
Publication year:
2019
Bibliographic description:
Bystrzanowska M., Francisco P., Marcinkowski Ł., Tobiszewski M.: How green are ionic liquids? – A multicriteria decision analysis approach// ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY. -Vol. 174, (2019), s.455-458
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ecoenv.2019.03.014
Bibliography: test
  1. Amde, M., Liu, J.-F., Pang, L., 2015. Environmental application, fate, effects, and concerns of 218 ionic liquids: A review. Environ. Sci. Technol. 49, 12611-12627. open in new tab
  2. Anastas, P.T., Lankey, R.L., 2000. Life cycle assessment and green chemistry: The yin and 220 yang of industrial ecology. Green Chem. 2, 289-295. open in new tab
  3. Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., Wasserscheid, P., 2001. Deep 222 desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. 2494- 223 2495. open in new tab
  4. Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T., 2013. Deconstruction of lignocellulosic 225 biomass with ionic liquids. Green Chem. 15, 550-583. open in new tab
  5. Byrne, F.P., Jin, S., Paggiola, G., Petchey, T.H.M., Clark, J.H., Farmer, T.J., Hunt, A.J., 227 open in new tab
  6. Mcelroy, C.R., Sherwood, J., 2016. Tools and techniques for solvent selection: green 228 solvent selection guides. Sustain. Chem. Process. 4, 1-24.
  7. Chiappe, C., Pieraccini, D., 2005. Ionic liquids: solvent properties and organic reactivity. J. 230 open in new tab
  8. Phys. Org. Chem. 18, 275-297. open in new tab
  9. Cinelli, M., Coles, S.R., Kirwan, K., 2014. Analysis of the potentials of multi criteria decision 232 analysis methods to conduct sustainability assessment. Ecol. Indic. 46, 138-148. open in new tab
  10. Cinelli, M., Coles, S.R., Nadagouda, M.N., Błaszczyński, J., Słowiński, R., Varma, R.S., 234 open in new tab
  11. Kirwan, K., 2015. A green chemistry-based classification model for the synthesis of 235 silver nanoparticles. Green Chem. 17, 2825-2839.
  12. Costa, S.P.F., Azevedo, A.M.O., Pinto, P.C.A.G., Saraiva, M.L.M.F.S., 2017. Environmental 237 impact of ionic liquids: Recent advances in (eco)toxicology and (bio)degradability. 238 open in new tab
  13. ChemSusChem 10, 2321-2347. open in new tab
  14. Cvjetko Bubalo, M., Radošević, K., Radojčić Redovniković, I., Halambek, J., Gaurina Srček, 240
  15. V., 2014. A brief overview of the potential environmental hazards of ionic liquids.
  16. Ecotoxicol. Environ. Saf. 99, 1-12. open in new tab
  17. Earle, M.J., Esperança, J.M.S.S., Gilea, M.A., Lopes, J.N.C., Rebelo, L.P.N., Magee, J.W., 243 open in new tab
  18. Seddon, K.R., Widegren, J.A., 2006. The distillation and volatility of ionic liquids. 244 Nature 439, 831-834.
  19. Eshetu, G.G., Armand, M., Ohno, H., Scrosati, B., Passerini, S., 2016. Ionic liquids as tailored 246 media for the synthesis and processing of energy conversion materials. Energy Environ. open in new tab
  20. Sci. 9, 49-61. open in new tab
  21. Estager, J., Holbrey, J.D., Swadzba-Kwasny, M., 2014. Halometallate ionic liquids - 249 revisited. Chem. Soc. Rev. 43, 847-886. open in new tab
  22. Huang, I.B., Keisler, J., Linkov, I., 2011. Multi-criteria decision analysis in environmental 251 sciences: Ten years of applications and trends. Sci. Total Environ. 409, 3578-3594. open in new tab
  23. Hubbard, C.D., Illner, P., Eldik, R. Van, 2011. Understanding chemical reaction mechanisms 253 in ionic liquids: successes and challenges. Chem. Soc. Rev. 40, 272-290. open in new tab
  24. Jessop, P.G., 2011. Searching for green solvents. Green Chem. 13, 1391-1398. open in new tab
  25. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliot, G.D., 256 open in new tab
  26. Davis Jr., J.H., Watanabe, M., Simon, P., Angell, C.A., 2014. Energy aplications of ionic 257 liquids. Energy Environ. Sci. 7, 232-250.
  27. Matzke, M., Stolte, S., Thiele, K., Juffernholz, T., Arning, J., Ranke, J., Welz-Biermann, U., 259 open in new tab
  28. Jastorff, B., 2007. The influence of anion species on the toxicity of 1-alkyl-3- 260 methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green 261
  29. Chem. 9, 1198-1207. open in new tab
  30. Meindersma, G.W., Hansmeier, A.R., Haan, B. De, 2010. Ionic liquids for aromatics 263 10 open in new tab
  31. extraction. Present status and future outlook. Ind. Eng. Chem. Res. 49, 7530-7540. open in new tab
  32. Naidu, S., Sawhney, R., Li, X., 2008. A methodology for evaluation and selection of 265 nanoparticle manufacturing processes based on sustainability metrics. Environ. Sci. open in new tab
  33. Technol. 42, 6697-6702. open in new tab
  34. Olivier-Bourbigou, H., Magna, L., Morvan, D., 2010. Ionic liquids and catalysis: Recent 268 progress from knowledge to applications. Appl. Catal. A Gen. 373, 1-56. open in new tab
  35. Pârvulescu, V.I., Hardacre, C., 2007. Catalysis in ionic liquids. Chem. Rev. 107, 2615-2665. open in new tab
  36. Passos, H., Freire, M.G., Coutinho, J.A.P., 2014. Ionic liquid solutionss as extractive solvents 271 for value-added compounds from biomass. Green Chem. 16, 4786-4815. open in new tab
  37. Pena-Pereira, F., Namieśnik, J., 2014. Ionic liquids and deep eutectic mixtures: Sustainable 273 solvents for extraction processes. ChemSusChem 7, 1784-1800. open in new tab
  38. Pham, T.P.T., Cho, C.-W., Yun, Y.-S., 2010. Environmental fate and toxicity of ionic liquids: 275 A review. Water Res. 44, 352-372.
  39. Plechkova, N. V, Seddon, K.R., 2008. Applications of ionic liquids in the chemical industry. open in new tab
  40. Chem. Soc. Rev. 37, 123-150. open in new tab
  41. Poliakoff, M., Fitzpatrick, J.M., Farren, T.R., Anastas, P.T., 2002. Green chemistry: Science 279 and politics of change. Science. 297, 807-810. open in new tab
  42. Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C. R., Abou-Shehada, S., & Dunn, P. J. 281 2015. CHEM21 selection guide of classical-and less classical-solvents. Green 282 open in new tab
  43. Chem.18(1), 288-296. open in new tab
  44. Ranke, J., Stolte, S., Störmann, R., Arning, J., Jastorff, B., 2007. Design of sustainable 284 chemical products -The example of ionic liquids. Chem. Rev. 107, 2183-2206. open in new tab
  45. Rogers, R.D., Seddon, K.R., 2003. Ionic Liquids-Solvents of the Future? Science. 302, 286 792-793. open in new tab
  46. Sheldon, R.A., 2017. The: E factor 25 years on: The rise of green chemistry and 288 sustainability. Green Chem. 19, 18-43. open in new tab
  47. Stark, A., 2011. Ionic liquids in the biorefinery: a critical assessment of their potential. Energy 290 open in new tab
  48. Environ. Sci. 4, 19-32. open in new tab
  49. Sun, X., Luo, H., Dai, S., 2012. Ionic liquids-based extraction: A promising strategy for the 292 advanced nuclear fuel cycle. Chem. Rev. 112, 2100-2128. open in new tab
  50. Tobiszewski, M., Namieśnik, J., Pena-Pereira, F., 2017a. Environmental risk-based ranking of 294 solvents using the combination of a multimedia model and multi-criteria decision 295 analysis. Green Chem. 19, 1034-1042. open in new tab
  51. Tobiszewski, M., Namieśnik, J., Pena-Pereira, F., 2017b. A derivatisation agent selection 297 open in new tab
Verified by:
Gdańsk University of Technology

seen 143 times

Recommended for you

Meta Tags