Increasing the conductivity of V2O5 -TeO2 glass by crystallization: structure and charge transfer studies - Publication - Bridge of Knowledge

Search

Increasing the conductivity of V2O5 -TeO2 glass by crystallization: structure and charge transfer studies

Abstract

In the present paper, V2O5-TeO2 glass was prepared by the melt-quenching technique. Crystallization of glass with a vanadium content higher than 35%mol results in an increase in electrical conductivity by a few orders of magnitude and a decrease in activation energy from *0.40 to *0.12 eV. In this work, a critical review of existing charge transfer models was presented on the example of V2O5 -TeO2 glass and glass–ceramics. Schnakenberg’s and Friedman-Triberis’ charge transfer models were found to be applicable to both glass and glass– ceramics. Optical phonon frequencies obtained from Schnakenberg’s model are in agreement with FTIR studies. Values of activation energies obtained from the Schnakenberg model decrease after crystallization. Friedman-Triberis’ model shows an increase in the density of states near the Fermi level from 10^19 eV-1 cm-3 in glass, to 10 21 eV-1 cm-3 in glass ceramics. Structural studies show that the main crystallizing phase is Te2V2O9 which occurs with the V2O5 shell in glasses with compositions 50–50%mol and 45–55%mol. It is concluded that crystallization results in the reduction of vanadium ions in the remaining glass matrix which leads to an increase in the V4+/V5+ ratio and therefore, an increase in electrical conductivity.

Citations

Cite as

Full text

download paper
downloaded 30 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
JOURNAL OF MATERIALS SCIENCE
ISSN: 0022-2461
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) https://doi.org/10.1007/s10853-023-08560-x
Bibliography: test
  1. Murawski L, Chung CH, Mackenzie JD (1979) Electrical properties of semiconducting oxide glasses. J Non Cryst Solids 32:91-104. https://doi.org/10.1016/0022-3093(79)90 066-8 open in new tab
  2. Chung C-H (1979) Electrical properties of semiconducting oxide glasses based on vanadium oxide. University of California
  3. Flynn BW (1977) Electrical and optical properties of vana- dium tellurite glasses. The University of Edinburg open in new tab
  4. Mansingh A, Dhawan VK, Sayer M (1983) Dielectric relaxation and modulus of V 2 O 5 -TeO 2 glasses. Philos Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 48:215-236. https://doi.org/10.1080/13642818308228285 open in new tab
  5. Greaves GN (1973) Small polaron conduction in V 2 O 5 P 2 O 5 glasses. J Non Cryst Solids 11:427-446. https://doi.org/10. 1016/0022-3093(73)90089-6 open in new tab
  6. Shimakawa K (1989) On the mechanism of d.c. and a.c. transport in transition metal oxide glasses. Philos Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 60:377-389. https://doi.org/10.1080/13642818908205914 open in new tab
  7. Murawski L, Barczyński RJ (1995) Dielectric properties of transition metal oxide glasses. J Non Cryst Solids 185:84-93. https://doi.org/10.1016/0022-3093(95)00677-X open in new tab
  8. Murawski L (1984) AC conductivity in binary V 2 O 5 -P 2 O 5 glasses. Philos Mag B 50:L69-L74. https://doi.org/10.1080/ 13642818408238888 open in new tab
  9. Pietrzak TK, Wasiucionek M, Garbarczyk JE (2021) Towards higher electric conductivity and wider phase sta- bility range via nanostructured glass-ceramics processing. Nanomaterials. https://doi.org/10.3390/nano11051321 open in new tab
  10. Garbarczyk JE, Pietrzak TK, Wasiucionek M, Kaleta A, Dorau A, Nowiński JL (2015) High electronic conductivity in nanostructured materials based on lithium-iron-vanadate- phosphate glasses. Sol State Ion 272:53-59. https://doi.org/ 10.1016/j.ssi.2014.12.019 open in new tab
  11. Pietrzak TK, Pawliszak Ł, Michalski PP, Wasiucionek M, Garbarczyk JE (2014) Highly conductive 90V 2 O 5 Á10P 2 O 5 nanocrystalline cathode materials for lithium-ion batteries. Proced Eng 98:28-35. https://doi.org/10.1016/j.proeng.2014. 12.483 open in new tab
  12. Pietrzak TK, Michalski PP, Kruk PE, Ś lubowska W, Szlachta K, Duda P, Nowiński JL, Wasiucionek M, Garbarczyk JE (2017) Nature of electronic conductivity in olivine-like glasses and nanomaterials of Li 2 O-FeO-V 2 O 5 -P 2 O 5 system. Sol State Ion 302:45-48. https://doi.org/10.1016/j.ssi.2016. 11.031 open in new tab
  13. Pietrzak TK, Wasiucionek M, Nowiński JL, Garbarczyk JE (2013) Isothermal nanocrystallization of vanadate-phosphate glasses. Sol State Ion 251:78-82. https://doi.org/10.1016/j. ssi.2013.01.004 open in new tab
  14. Emin D (1982) Small polarons. Phys Today 35:34-40. h ttps://doi.org/10.1063/1.2938044 open in new tab
  15. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non Cryst Sol 1:1-17. https://doi.org/10.1016/ 0022-3093(68)90002-1 open in new tab
  16. Schnakenberg J (1968) Polaronic impurity hopping con- duction. Phys Status Sol 28:623-633. https://doi.org/10.100 2/pssb.19680280220 open in new tab
  17. Bridge B, Higazy AA (1986) Acoustic and optical debye temperatures of the vitreous system CoO-Co 2 O 3 -P 2 O 5 . J Mater Sci 21:2385-2390. https://doi.org/10.1007/ BF01114282 open in new tab
  18. El-Mallawany R (1992) Debye temperature of tellurite glasses. Phys Status Sol 130:103-108. https://doi.org/10.10 02/pssa.2211300112 open in new tab
  19. El-Mallawany R (1999) Tellurite glasses. Part 2. Anelastic, phase separation, debye temperature and thermal properties. Mater Chem Phys 60:103-131. https://doi.org/10.1016/S02 54-0584(99)00082-6 open in new tab
  20. Sidkey MA, El-Mallawany R, Nakhla RIA, El-Moneim A (1997) Ultrasonic attenuation at low temperature of TeO 2 - V 2 O 5 glasses. Phys status sol 159:397-404. https://doi.org/ 10.1002/1521-396X(199702)159:2%3c397::AID-PSS A397%3e3.0.CO2-0 open in new tab
  21. Szreder NA, Kosiorek P, Karczewski J, Gazda M, Barczy RJ (2014) Microstructure and dielectric properties of barium- vanadate glasses. Proced Eng 98:62-70. https://doi.org/10. 1016/j.proeng.2014.12.489 open in new tab
  22. Sen S, Ghosh A (1999) Semiconducting properties of mag- nesium vanadate glasses. J Appl Phys 86:2078-2082. http s://doi.org/10.1063/1.371012 open in new tab
  23. Dimitriev Y, Dimitrov V, Arnaudov M, Topalov D (1983) IR-spectral study of vanadate vitreous systems. J Non Cryst Sol 57:147-156. https://doi.org/10.1016/0022-3093(83)904 17-9 open in new tab
  24. Triberis GP, Friedman LR (1985) The effect of the density of states on the conductivity of the small-polaron hopping regime in disordered systems. J Phys Condens Matter 18:2281-2286. https://doi.org/10.1088/0022-3719/18/11/011 open in new tab
  25. Degen T, Sadki M, Bron E, König U, Nénert G (2014) The high score suite. Powder Diffr 29:S13-S18. https://doi.org/ 10.1017/S0885715614000840 open in new tab
  26. Wó jcik NA, Tagiara NS, Möncke D, Kamitsos EI, Ali S, Ryl J, Barczyński RJ (2022) Mechanism of hopping conduction in Be-Fe-Al-Te-O semiconducting glasses and glass-ce- ramics. J Mater Sci 57:1633-1647. https://doi.org/10.1007/ s10853-021-06834-w open in new tab
  27. Abd El-Moneim A (2002) DTA and IR absorption spectra of vanadium tellurite glasses. Mater Chem Phys 73:318-322. h ttps://doi.org/10.1016/S0254-0584(01)00355-8 open in new tab
  28. Dimitriev J, Arnaudov M, Dimitrov V (1976) IR-Spektral- analyse von glasern des systems TeO 2 -V 2 0 5 . Monatshefte fur chem 107:1335-1343. https://doi.org/10.1007/ BF01153912 open in new tab
  29. Baia L, Bolboaca M, Kiefer W, Yousef ES, Rüssel C, Bre- itbarth FW, Mayerhöfer TG, Popp J (2004) Spectroscopic studies on the structure of vanadium tellurite glasses. Phys Chem Glas 45:178-182
  30. Ji H, Liu D, Cheng H, Zhang C, Yang L, Ren D (2017) Infrared thermochromic properties of monoclinic VO 2 nanopowders using a malic acid-assisted hydrothermal method for. RSC Adv 7:5189. https://doi.org/10.1039/c6ra 26731a open in new tab
  31. Shafeeq KM, Athira VP, Kishor CHR, Aneesh PM (2020) Structural and optical properties of V 2 O 5 nanostructures grown by thermal decomposition technique. Appl Phys A. h ttps://doi.org/10.1007/s00339-020-03770-5 open in new tab
  32. Sinclair RN, Wright AC, Bachra B, Dimitriev YB, Dimitrov VV, Arnaudov MG (1998) The structure of vitreous V 2 O 5 - TeO 2 . J Non Cryst Sol 232-234:38-43. https://doi.org/10. 1016/S0022-3093(98)00544-4 open in new tab
  33. Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/32/14/201 open in new tab
  34. Austin IG, Mott NF (2001) Polarons in crystalline and non- crystalline materials. Adv Phys 50:757-812. https://doi.org/ 10.1080/00018730110103249 open in new tab
  35. Mott NF, Davis EA (1979) Electronic processes in non- crystalline material. (p. 80-113) ISBN 978-0-19-964533-6 open in new tab
  36. Ioffe VA, Patrina IB (1970) Comparison of the small-polaron theory with the experimental data of current transport in V 2 O 5 . Phys Status Sol 40:389-395. https://doi.org/10.1002/ pssb.19700400140 open in new tab
  37. Prześniak-Welenc M, Szreder NA, Winiarski A, Łapiński M, Kościelska B, Barczyński RJ, Gazda M, Sadowski W (2015) Electrical conductivity and relaxation processes in V 2 O 5 nanorods prepared by sol-gel method. Phys Status Sol 9:2111-2116. https://doi.org/10.1002/pssb.201552113 open in new tab
  38. Murawski L (1993) Electronic cond in oxide glasses. Pol Ceram Bull 5:111-122 open in new tab
  39. Sakata H, Sega K, Chaudhuri BK (1999) Multiphonon tun- neling conduction in vanadium-cobalt-tellurite glasses. Phys Rev B-Condens Matter Mater Phys 60:3230-3236. https://d oi.org/10.1103/PhysRevB.60.3230 open in new tab
  40. Moawad HMM, Jain H, El-Mallawany R (2009) DC con- ductivity of silver vanadium tellurite glasses. J Phys Chem Sol 70:224-233. https://doi.org/10.1016/j.jpcs.2008.10.009 open in new tab
  41. Tashtoush N, Qudah AM, El-Desoky MM (2007) Compo- sitional dependence of the electrical conductivity of calcium vanadate glassy semiconductors. J Phys Chem Sol 68:1926-1932. https://doi.org/10.1016/j.jpcs.2007.05.027 open in new tab
  42. Andreev VN, Klimov VA (2007) Electrical conductivity of the semiconducting phase in vanadium dioxide single crys- tals. Phys Sol State 49:2251-2255. https://doi.org/10.1134/ S1063783407120062 open in new tab
  43. Mott NF (1969) Conduction in non-crystalline materials III. localized states in a pseudogap and near extremities of conduction and valence bands. Philos Mag 19:835-852. h ttps://doi.org/10.1080/14786436908216338 open in new tab
  44. Sakida S, Hayakawa S, Yoko T (2000) 125 Te and 51 V static NMR study of V 2 O 5 -TeO 2 glasses. J Phys Condens Matter 12:2579-2595. https://doi.org/10.1088/0953-8984/12/12/ 302 open in new tab
  45. Murawski L, Sanchez C, Livage J, Audiere JP (1990) Small polaron transport in amorphous V 2 O 5 films. J Non Cryst Sol 124:71-75. https://doi.org/10.1016/0022-3093(90)91081-2 open in new tab
  46. El-Mallawany R (2003) Glass transformation temperature and stability of tellurite glasses. J Mater Res 18:402-406. h ttps://doi.org/10.1557/JMR.2003.0051 open in new tab
  47. Chakraborty S, Boolchand P, Malki M, Micoulaut M (2018) Designing heavy metal oxide glasses with threshold prop- erties from network rigidity. J Chem Phys. https://doi.org/10. 1063/1.4855695 open in new tab
  48. Shimakawa K (1989) Multiphonon hopping of electrons on defect clusters in amorphous germanium. Phys Rev B 39:12933-12936. https://doi.org/10.1103/PhysRevB.39. open in new tab
  49. Shimakawa K, Miyake K (1989) Hopping transport of localized electrons in amorphous carbon films. Phys Rev B 39:7578-7584. https://doi.org/10.1103/PhysRevB.39.7578 open in new tab
  50. Emin D (1974) Phonon-assisted jump rate in noncrystalline solids. Phys Rev Lett 32:303-307. https://doi.org/10.1103/ PhysRevLett.32.303 open in new tab
  51. Englman R, Jortner J (1969) The energy gap law for radia- tionless transitions in large molecules. Mol Phys 18:145-164. https://doi.org/10.1080/00268977000100171 open in new tab
  52. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. open in new tab
Verified by:
No verification

seen 61 times

Recommended for you

Meta Tags