Induction machine behavioral modeling for prediction of EMI propagation. - Publication - Bridge of Knowledge

Search

Induction machine behavioral modeling for prediction of EMI propagation.

Abstract

This paper presents the results of wideband behavioral modeling of an induction machine (IM). The proposed solution enables modeling the IM differential- and common-mode impedance for a frequency range from 1 kHz to 10 MHz. Methods of parameter extraction are derived from the measured IM impedances. The developed models of 1.5 kW and 7.5 kW induction machines are designed using the Saber Sketch scheme editor and simulated in the SABER simulator. Modeling validation is based on prediction of electromagnetic interference (EMI) emissions of common-mode and differential-mode current spectra of experimental inverter-fed IM drives.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 44 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Bulletin of the Polish Academy of Sciences-Technical Sciences no. 65, edition 2, pages 247 - 254,
ISSN: 0239-7528
Language:
English
Publication year:
2017
Bibliographic description:
Turzyński M.: Induction machine behavioral modeling for prediction of EMI propagation.// Bulletin of the Polish Academy of Sciences-Technical Sciences. -Vol. 65, iss. 2 (2017), s.247-254
DOI:
Digital Object Identifier (open in new tab) 10.1515/bpasts-2017-0028
Bibliography: test
  1. S. Bartos, I. Dolezel, J. Necesany, J. Skramlik, and V. Valouch, "Electromagnetic interferences in inverter-fed induction motor drives", International Conference on Renewable Energies and Power Quality, (2008). open in new tab
  2. H. Miloudi, A. Bendaoud, K. Mendaz, M. Benhadjla, A. Gourbi, and M. Brahami, "Modeling of differential-mode and com- mon-mode characteristics for EMI/EMC analysis applied to a high-frequency induction motor", IV International Symposium on Power Quality SICEL-2007 19, (2007). open in new tab
  3. R. Smoleński, "Selected conducted electromagnetic interference issues in distributed power systems", Bull. Pol. Ac.: Tech. 57 (4), 383-393 (2009). open in new tab
  4. R. Smoleński, M. Jarnut, G. Benysek, and A. Kempski, "CM voltage compensation in AC/DC/AC interfaces for smart grids", Bull. Pol. Ac.: Tech. 59 (4), 513-523 (2011). open in new tab
  5. A. Roc'h, Behavioural Models for Common-Mode EMI Filters, PhD Thesis, University of Twente, Enschede, 2012. open in new tab
  6. J. Itoh, T. Araki, and K. Orikawa, "Experimental verification of an EMC filter used for PWM inverter with wide band-gap devices", International Power Electronics Conference IPEC, Hiroshima, Japan, 1925-1932 (2014). open in new tab
  7. B. Revol, J. Roudet, J.L. Schanen, and P. Loizelet, "EMI study of a three phase inverter-fed motor drives", 39th IAS Annual Meeting Industry Applications Conference 4, 2657-2664 (2004). open in new tab
  8. M. Turzynski and W.J. Kulesza, "A simplified behavioral mosfet model based on parameters extraction for circuit simulations", IEEE Trans. on Power Electronics 31 (4), 3096-3105 (2016). open in new tab
  9. N. Bondarenko, Electromagnetic Compatibility in Power In- verter Design, PhD Thesis, Missouri University of Science and Technology, 2015.
  10. P. Musznicki, M. Turzyński, and P.J. Chrzan, "Accurate mod- eling of quasi-resonant inverter fed IM drive", 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), 376-381 (2013). open in new tab
  11. E. Zhong and T.A. Lipo, "Improvements in EMC performance of inverter-fed motor drives", IEEE Trans. on Industry Applications 31 (6), 1247-1256 (1995).
  12. A. Boglietti and E. Carpaneto, "Induction motor high frequency model", Thirty-Fourth IAS IEEE Industry Applications Confer- ence 3, 1551-1558 (1999). open in new tab
  13. F. Della Torre, S. Leva, and A.P. Morando, "Three-phase dis- tributed constants model of induction machines for EMC and surge propagation studies", COMPEL -International Journal for Computation and Mathematics in Electrical and Electronic Engineering 27 (4), 770-779 (2008). open in new tab
  14. S.-P. Weber, E. Hoene, S. Guttowski, W. John, and H. Reichl, "Modeling induction machines for EMC-Analysis", IEEE 35th Annual Power Electronics Specialists Conference PESC 04 1, 94-98 (2004). open in new tab
  15. G. Grandi, D. Casadei, and U. Reggiani, "Equivalent circuit of mush wound AC windings for high frequency analysis", IEEE International Symposium on Industrial Electronics 1, Guimaraes, Portugal, 201-206 (1997). open in new tab
  16. G. Grandi, D. Casadei, and A. Massarini, "High frequency lumped parameter model for AC motor windings", European Conference on Power Electronics and Applications, Trondheim, Norway, (1997).
  17. G. Grandi, D. Casadei, and U. Reggiani, "Analysis of common- and differential-mode HF current components in PWM invert- er-fed AC motors", 29th Annual IEEE Power Electronics Spe- cialists Conference 2, 1146-1151 (1998). open in new tab
  18. G. Grandi, D. Casadei, and U. Reggiani, "Common-and differ- ential-mode HF current components in AC motors supplied by voltage source inverters", IEEE Trans. Power Electron. 19 (1), 16-24 (2004). open in new tab
  19. S. Kim and D.P. Neikirk, "Compact equivalent circuit model for the skin effect", IEEE MTT-S International Microwave Sympo- sium Digest 3, 1815-1818 (1996). open in new tab
  20. Find Minimum of Unconstrained Multivariable Function Using Derivative-Free Method -MATLAB fminsearch, http://www.mathworks.com/help/matlab/ref/fminsearch.html, (2016). open in new tab
  21. GNU Octave: Minimizers, https://www.gnu.org/software/octave/ doc/v4.0.1/Minimizers.html, (2016). open in new tab
  22. M Turzyński, Behavioral Modeling of IGBT Transistors for Simulation of Power Electronics, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2012, [in Polish].
Verified by:
Gdańsk University of Technology

seen 106 times

Recommended for you

Meta Tags