Influence of Antimony Substitution on Spontaneous Strain and Thermodynamic Stability of Lanthanum Orthoniobate - Publication - Bridge of Knowledge

Search

Influence of Antimony Substitution on Spontaneous Strain and Thermodynamic Stability of Lanthanum Orthoniobate

Abstract

The analysis of the antimony substitution influence on temperature dependence of unit cell distortion has been done. The values of spontaneous strain and Landau order parameter for three different antimony contents varied had been calculated. The phase transition occurring for antimony substituted lanthanum orthoniobate was found to be second order. The high temperature solution calorimetry method has been used to investigate the influence of antimony substitution on stability of both monoclinic and tetragonal phases of antimony substituted lanthanum orthoniobate. It has been found that antimony substitution does not influence the stability of monoclinic phase. The average value of enthalpy of formation of antimony substituted lanthanum orthoniobate with fergusonite structure has been found to be equal to -132.0 ± 0.8 kJ/mol, while in the case of scheelite structure -126.4 ± 1.5 kJ/mol.

Citations

  • 2 4

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 68 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CERAMICS INTERNATIONAL no. 41, edition 2,Part A, pages 2128 - 2133,
ISSN: 0272-8842
Language:
English
Publication year:
2015
Bibliographic description:
Mielewczyk-Gryń A., Wachowski S., Lilova K., Guo X., Gazda M., Navrotsky A.: Influence of Antimony Substitution on Spontaneous Strain and Thermodynamic Stability of Lanthanum Orthoniobate// CERAMICS INTERNATIONAL. -Vol. 41, iss. 2,Part A (2015), s.2128-2133
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ceramint.2014.10.010
Bibliography: test
  1. R. Haugsrud, T. Norby, Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater. 5 (3) (2006) 193-196. open in new tab
  2. M. Hirano, H. Dozono, Synthesis of luminescent nanocrystals and solid solutions in the YNbO 4 -EuNbO 4 system via hydrothermal route, Mater. Res. Bull. 50 (0) (2014) 213-220. open in new tab
  3. J. Huang, L. Zhou, Z. Liang, F. Gong, J. Han, R. Wang, Promising red phosphors LaNbO 4 :Eu 3 þ , Bi 3 þ for LED solid-state lighting application, J. Rare Earths, 28, , 2010, p. 356-360. open in new tab
  4. H.P. Rooksby, E.A.D. White, The structures of 1:1 compounds of rare earth oxides with niobia and tantala, Acta Crystallogr. 16 (9) (1963) 888-890. open in new tab
  5. V.S. Stubican, High-temperature transitions in rare-earth niobates and tantalates, J. Am. Ceram. Soc. 47 (2) (1964) 55-58. open in new tab
  6. Y.A. Titov, A.M. Sych, A.N. Sokolov, A.A. Kapshuk, V.P. Yashchuk, High-pressure polymorph of LaNbO 4 , Inorg. Mater. 36 (6) (2000) 625-628. open in new tab
  7. M. Huse, A.W.B. Skilbred, M. Karlsson, S.G. Eriksson, T. Norby, R. Haugsrud, C.S. Knee, Neutron diffraction study of the monoclinic to tetragonal structural transition in LaNbO 4 and its relation to proton mobility, J. Solid State Chem. 187 (0) (2012) 27-34. open in new tab
  8. F. Vullum, F. Nitsche, S.M. Selbach, T. Grande, Solid solubility and phase transitions in the system LaNb 1 À x Ta x o 4 , J. Solid State Chem. 181 (10) (2008) 2580-2585. open in new tab
  9. A.D. Brandão, J. Gracio, G.C. Mather, V.V. Kharton, D.P. Fagg, B-site substitutions in LaNb 1 À x M x O 4 À δ materials in the search for potential proton conductors (M ¼Ga, Ge, Si, B, Ti, Zr, P, Al), J. Solid State Chem. 184 (4) (2011) 863-870. open in new tab
  10. S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, Effect of isovalent substitu- tion on microstructure and phase transition of LaNb 1À x M x O 4 (M¼ Sb, V or Ta; x¼ 0.05 to 0.3), J. Solid State Chem. 219 (2014) 201-209. open in new tab
  11. L. Malavasi, C. Ritter, G. Chiodelli, Investigation of the high temperature structural behavior of La 0.99 Ca 0.01 NbO 4 proton conducting material, J. Alloys Compd. 475 (1-2) (2009) L42-L45. open in new tab
  12. A. Mielewczyk-Gryn, K. Gdula, T. Lendze, B. Kusz, M. Gazda, Nano- and microcrystals of doped niobates, Cryst. Res. Technol. 45 (12) (2010) 1225-1228. open in new tab
  13. A. Mielewczyk-Gryn, K. Gdula-Kasica, B. Kusz, M. Gazda, High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho-niobate, Ceram. Int. 39 (4) (2013) 4239-4244. open in new tab
  14. S. Tsunekawa, T. Kamiyama, K. Sasaki, H. Asano, T. Fukuda, Precise structure analysis by neutron diffraction for RNbO 4 and distortion of NbO 4 tetrahedra, Acta Crystallogr., Sect. A: Found. Crystallogr. 49 (4) (1993) 595-600. open in new tab
  15. W.I.F. David, The high-temperature paraelastic structure of LaNbO 4 , Mater. Res. Bull. 18 (6) (1983) 749-756. open in new tab
  16. A. Navrotsky, Progress and new directions in high temperature calori- metry, Phys. Chem. Miner. 2 (1-2) (1977) 89-104. open in new tab
  17. A. Navrotsky, Progress and new directions in high temperature calori- metry revisited, Phys. Chem. Miner. 24 (3) (1997) 222-241. open in new tab
  18. H. Xu, A. Navrotsky, Y. Su, M.L. Balmer, Perovskite solid solutions along the NaNbO 3 ÀSrTiO 3 join: phase transitions, formation enthalpies, and implications for general perovskite energetics, Chem. Mater 17 (7) (2005) 1880-1886. open in new tab
  19. K. Aizu, Determination of the state parameters and formulation of spontaneous strain for ferroelastics, J. Phys. Soc. Jpn. 28 (3) (1970) 706-716. open in new tab
  20. L. Jian, C.M. Wayman, Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate, LaNbO 4 , J. Am. Ceram. Soc. 80 (3) (1997) 803-806. open in new tab
  21. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Found. Crystallogr. 32 (5) (1976) 751-767. open in new tab
  22. G.C. Cardoso da Costa, L. Wu, A. Navrotsky, Synthesis and thermo- chemistry of relaxor ferroelectrics in the lead magnesium niobate-lead titanate (PMN-PT) solid solutions series, J. Mater. Chem. 21 (6) (2011) 1837-1845. open in new tab
  23. S.V. Ushakov, K.B. Helean, A. Navrotsky, L.A. Boatner, Thermochem- istry of rare-earth orthophosphates, J. Mater. Res. 16 (2001) 2623-2633. open in new tab
  24. K.P.F. Siqueira, R.M. Borges, J.C. Soares, A. Dias, Structural and thermal evolution studies of LaSbO 4 ceramics prepared by solid-state reaction method, Mater. Chem. Phys. 140 (1) (2013) 255-259. open in new tab
Verified by:
Gdańsk University of Technology

seen 116 times

Recommended for you

Meta Tags