Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography - Publication - Bridge of Knowledge


Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography


Paper presents investigation of fracture phenomenon in plain concrete and in concrete reinforced with both recycled steel fibers (RSF) and industrial steel fibers (ISF). The wedge splitting test (WST), which enables stable crack propagation for quasi-brittle materials, was carried out on 75 75 75 mm cube samples. Initially, fracture process zone development was investigated only on the surface of samples using Digital Image Correlation which is a non-destructive optical testing method. Furthermore, to anal- yse the 3D cracking phenomenon (formation, development, width, shape and curvature) X-ray micro computed tomography was used. Micro-CT images were taken during continuous deformation process - without unloading sample during scanning. X-ray micro-computed tomography was also used to visu- alise and characterise air voids and fibers (length, diameter and orientation) embedded in concrete. The mechanical properties of plain, RSF and ISF reinforced concrete in terms of compressive strength, tensile splitting strength, shrinkage, tensile and residual strength in 3-point bending were additionally described.


  • 1 2 0


  • 0

    Web of Science

  • 1 2 6


Cite as

Full text

download paper
downloaded 157 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY-NC-ND open in new tab



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ISSN: 0950-0618
Publication year:
Bibliographic description:
Skarżyński Ł., Suchorzewski J.: Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography// CONSTRUCTION AND BUILDING MATERIALS. -Vol. 183, (2018), s.283-299
Digital Object Identifier (open in new tab) 10.1016/j.conbuildmat.2018.06.182
Bibliography: test
  1. Z. Bažant, J. Planas, Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials, CRC Press LLC, Boca Raton, 1997. open in new tab
  2. G. Lilliu, J.G.M. van Mier, 3D lattice type fracture model for concrete, Eng. Fract. Mech. 70 (2003) 927-941. open in new tab
  3. Ł. Skar _ zyń ski, M. Nitka, J. Tejchman, Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray lCT images of internal structure, Eng. Fract. Mech. 147 (2015) 13-35.
  4. A.-L. Hoang, E. Fehling, Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete, Constr. Build. Mater. 153 (2017) 790-806.
  5. J.-H. Lee, B. Cho, E. Choi, Flexural capacity of reinforced concrete with a consideration of concrete strength and fiber content, Constr. Build. Mater. 138 (2017) 222-231. open in new tab
  6. D.-Y. Yoo, Y.-S. Yoo, N. Banthia, Flexural response od steel-fiber-reinforced concrete beams: effect of strength, fiber content and strain-rate, Cem. Concr. Compos. 64 (2015) 84-92. open in new tab
  7. Z. Wu, C. Shi, W. Hi, L. Wu, Effects of steel fibres distribution on mechanical properties of ultra high performance concrete, Constr. Build. Mater. 103 (2016) 8-14. open in new tab
  8. M.N. Soutsos, T.T. Le, A.P. Lampropoulos, Flexural performance of fibre reinforced concrete made with steel and synthetic fibers, Constr. Build. Mater. 36 (2012) 704-710. open in new tab
  9. J.M. Yang, K.H. Min, H.O. Shin, Y.S. Yoon, Effect of steel and synthetic fibers on flexural behaviour of high strength concrete beams reinforced with FRP bars, Compos. B Eng. 43 (3) (2012) 1077-1086. open in new tab
  10. A. Caggiano, S. Gambarelli, E. Martinelli, N. Nistricò, M. Pepe, Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete, Constr. Build. Mater. 125 (2016) 1035-1043. open in new tab
  11. A. Mada, F. Minelli, G.A. Plizzari, Flexural behaviour of RC beams in fiber reinforced concrete, Compos. B Eng. 43 (2012) 2930-2937.
  12. A. Caggiano, H. Xargay, P. Folino, E. Martinelli, Experimental and numerical characterization of the bond behaviour of steel fibers recovered from waste tyres embedded in cementitious matrices, Cem. Concr. Compos. 62 (2015) 146-155. open in new tab
  13. A. Caggiano, P. Folino, C. Lima, E. Martinelli, M. Pepe, On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fiber, Constr. Build. Mater. 147 (2017) 286-295. open in new tab
  14. A. Caggiano, G. Etse, E. Martinelli, Interface model for fracture behaviour of Fiber Reinforced Concrete Composites (FRCCs): theoretical formulation and numerical implementation, Eur. J. Environ. Civ. Eng. 15 (9) (2011) 1339-1359. open in new tab
  15. O. Sengul, Mechanical behaviour of concretes containing waste steel fibers recovered from scrap tyres, Constr. Build. Mater. 122 (2016) 649-658. open in new tab
  16. M. Leone, G. Centonze, D. Colonna, F. Micelli, M.A. Aiello, Fiber-reinforced concrete with low content of recycled steel fiber: shear behaviour, Constr. Build. Mater. 161 (2018) 141-155. open in new tab
  17. K.M. Nemati, Fracture analysis of concrete using scanning electron microscopy, Scanning 19 (1997) 426-430. open in new tab
  18. R.V. Balendran, H.W. Pang, H.X. Wen, Use of scanning electron microscopy in concrete studies, Struct. Surv. 16 (1998) 146-153. open in new tab
  19. S.H. Hadjab, M. Chabaat, J.F. Thimus, Use of Scanning Electron microscope and the non-local isotropic damage model to investigate fracture process zone in notched concrete beams, Exp. Mech. 47 (2007) 473-484. open in new tab
  20. J. Bhargava, A. Rehnström, High speed photography for fracture studies of concrete, Cem. Concr. Res. 5 (1975) 239-248. open in new tab
  21. J.A. Leendertz, Interferometric displacement measurement on scattering surfaces utilizing speckle effect, J. Phys. E: Sci. Instrum. 3 (1970) 214-218. open in new tab
  22. P. Jacquot, J.M. Fournier, Interferometry in Speckle Light: Theory and Applications, Springer, Berlin, 2000. open in new tab
  23. A. Maji, C. Ouyang, S.P. Shah, Fracture mechanisms of concrete based on acoustic emission, J. Mater. Res. 5 (1990) 206-217. open in new tab
  24. H. Mihashi, N. Nomura, Correlation between characteristics of fracture process zone and tension-softening properties of concrete, Nucl. Eng. Des. 165 (1996) 359-376. open in new tab
  25. A. Carpinteri, G. Lacidogna, Damage diagnostic in concrete and masonry structures by acoustic emission technique, Autom. Control Robot. 3 (2003) 755-764. open in new tab
  26. K. Otsuka, H. Date, Fracture process zone in concrete tension specimen, Eng. Fract. Mech. 65 (2000) 111-131. open in new tab
  27. H. Hadjab, Fracture process zone in concrete beams: experimental investigation and numerical modelling, in: Proceedings of the SEM Annual Conference, June 1-4, Albuquerque New Mexico USA, 2009.
  28. G. Nagy, T. Zhang, W. Franklin, E. Landis, E. Nagy, D. Keane, Volume and surface area distributions of cracks in concrete, in: C. Arcelli, L.P. Cordella, G.S. di Baja (Eds.), Visual Form 2001, vol. 2059, 2001, pp. 759-768. open in new tab
  29. E. Landis, E. Nagy, D. Keane, Microstructure and fracture in three dimensions, Eng. Fract. Mech. 70 (2003) 911-925. open in new tab
  30. M.A.B. Promentilla, T. Sugiyama, X-ray microtomography of mortars exposed to freezing-thawing action, J. Adv. Concr. Technol. 8 (2010) 97-111. open in new tab
  31. Ł. Skar _ zyń ski, J. Tejchman, Experimental investigations of fracture by means of X-ray micro computed tomography, Strain (2015), str.12168. open in new tab
  32. S. Ri, M. Fujigaki, Y. Morimoto, Sampling Moiré method for accurate small deformation distribution, Measurement 50 (2010) 501-508. open in new tab
  33. S. Ri, T. Muramatsu, M. Saka, K. Nanbara, D. Kobayashi, Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures, Exp. Mech. 52 (2012) 331-340. open in new tab
  34. D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. van Hemelrijck, A.M. Habraken, Quality assessment of speckle patterns for digital image correlation, Opti. Lasers Eng. 44 (2006) 1132-1145. open in new tab
  35. G. Corr, M. Accardi, L. Graham-Brady, S. Shah, Digital image correlation analysis of interfacial debonding properties and fracture behavior in concrete, Eng. Fract. Mech. 74 (2007) 109-121. open in new tab
  36. B. Pan, H. Xie, Z. Wang, K. Qian, Z. Wang, Study on subset size selection in digital image correlation for spackle patterns, Opt. Express 16 (2008) 7037- 7048. open in new tab
  37. Z. Wu, H. Rong, J. Zheng, W. Dong, An experimental investigation on the FPZ properties in concrete using digital image correlation technique, Eng. Fract. Mech. 78 (2011) 2978-2990. open in new tab
  38. S.Y. Alam, A. Loukili, F. Grondin, Monitoring size effect on crack opening in concrete by Digital Image Correlation, Eur. J. Environ. Civ. Eng. 16 (2012) 1-19. open in new tab
  39. Ł. Skar _ zyń ski, J. Kozicki, J. Tejchman, Application of DIC technique to concrete - study on objectivity of measured surface displacements, Exp. Mech. 53 (2013) 1545-1559.
  40. O. Orell, J. Vuorinen, J. Jokinen, H. Kettunen, P. Hytönen, J. Turunen, M. Kanerva, Characterization of elastic constants of anisotropic composites in compression using digital image correlation, Compos. Struct. 185 (2018) 176-185. open in new tab
  41. Y. Su, Z. Gao, Q. Zhang, S. Wu, Spatial uncertainity of measurement errors in digital image correlation, Opt. Lasers Eng. 110 (2018) 113-121. open in new tab
  42. L.I. Farfán-Cabrera, J.B. Pascual-Francisco, E.A. Gallardo-Hernández, O. Susarrey-Huerta, Application of digital image correlation technique to evaluate creep degradation of sealing elastomers due to exposure to fluids, Polym. Test. 65 (2018) 134-141. open in new tab
  43. M. Mehdikhani, M. Aravand, B. Sabuncuoglu, M.G. Callens, S.V. Lomov, L. Gorbatikh, Full-field strain measurements at the micro-scale in fiber- reinforced composites using digital image correlation, Compos. Struct. 140 (2016) 192-201. open in new tab
  44. M. Hamrat, B. Boulekbache, M. Chemrouk, S. Amziane, Flexural cracking behaviour of normal strength, high strength and high strength fiber concrete beams using Digital Image Correlation technique, Constr. Build. Mater. 106 (2016) 678-692. open in new tab
  45. Y.-R. Zhao, L. Wang, Z.-K. Lei, X.-F. Han, Y.-M. Xing, Experimental study on dynamic mechanical properties of the basalt fiber reinforced concrete after the freeze thaw based on the digital image correlation method, Constr. Build. Mater. 147 (2017) 194-202. open in new tab
  46. E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, L. Van Hoorebeke, An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging, J. Microsc. 250 (2013) 21-31. open in new tab
  47. T.K. Sampath, P. Simic, R. Sendak, N. Draca, A.E. Bowe, S. O'Brien, S.C. Schiavi, J. M. McPherson, S. Vukicevic, Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats, J. Bone Miner. Res. 22 (2007) 849-859. open in new tab
  48. D. Cantre, E. Herremans, P. Verboven, J. Ampofo-Asiama, B.M. Nicolai, Characterization of the 3-D microstructure of mango (Mangifera indica L. cv. Carabao) during ripening using X-ray computed microtomography, Innovative Food Sci. Emerg. Technol. 24 (2014) 28-39. open in new tab
  49. H.S. Tuan, W. Hutmacher, Application of micro-CT and computation modeling in bone tissue engineering, Comput. Aided Des. 37 (2005) 1151-1161. open in new tab
  50. D. Tilman, F. Pfeiffer, O. Bunk, Ch. Grunzweig, E. Hempel, S. Popescu, P. Vock, Ch. David, Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen, Invest. Radiol. 45 (2010) 445-452.
  51. K.I. Ignatiev, W.K. Lee, K. Fezzaa, S.R. Stock, Phase contrast stereometry: fatigue crack mapping in three dimensions, Philos. Mag. 85 (2005) 3273-3300. open in new tab
  52. T.J. Marrow, J.Y. Buffiere, P.J. Withers, G. Johnson, D. Engelberg, High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron, Int. J. Fatigue 26 (2004) 717-725. open in new tab
  53. E.N. Landis, E.N. Nagy, D.T. Keane, Microtomographic measurements of internal damage in portland-cement-based composites, J. Aerosp. Eng. 10 (1997) 2-6. open in new tab
  54. S. Lu, E.N. Landis, D.T. Keane, X-ray microtomographic studies of pore structure and permeability in Portland cement concrete, Mater. Struct. 39 (2006) 611- 620. open in new tab
  55. N. Burlion, D. Bernard, D. Chen, X-ray microtomography: aplication to microstructure analysis of a cementitious material during leaching process, Cem. Concr. Res. 36 (2006) 346-357. open in new tab
  56. B. Chevalier, Introduction of X-ray CT application in geotechnical engineering - theory and practice, Conf. Ser. Mater. Sci. Eng. 10 (2010), 10.1088/1757-899X/10/1/012089. open in new tab
  57. P. Besuell, G. Viggiani, N. Lenoir, J. Desrues, M. Bornert, X-ray micro-CT for studying strain localization in clay rocks under triaxial compression, in: Advances in X-ray Tomography for Geomaterials, 2nd International Workshop on X-Ray CT for Geomaterials, 2006, pp. 35-52. open in new tab
  58. F. Prade, F. Schaff, S. Senck, P. Meyer, J. Mohr, J. Kastner, F. Pfeiffer, Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography, NDT and E Int. 86 (2017) 65-72. open in new tab
  59. R. Wang, X. Gao, J. Zhang, G. Han, Spatial distribution of steel fibers and air bubbles in UHPC cylinder determined by X-ray CT method, Constr. Build. Mater. 160 (2018) 39-47. open in new tab
  60. T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, X-ray computed tomography harnessed to determine 3D spacing of steel fibers in self compacting (SCC) slabs, Constr. Build. Mater. 74 (2015) 102-208. open in new tab
  61. G.L. Balázs, O. Czoboly, E. Lublóy, K. Kapitány, A. Barsi, Observation of steel fibres in concrete with Computed Tomography, Constr. Build. Mater. 140 (2017) 534-541. open in new tab
  62. T. Ponikiewski, M. Gołaszewski, M. Rudzki, M. Bugdol, Determination of steel fibres distribution in self-compacting concrete beams using X-ray computed tomography, Arch. Civ. Eng. 2 (2015) 558-568 [xx] R. Wang, X. Gao, J. Zhang, G. Han, Spatial distribution of steel fibres and air bubbles in UHPC cylinder determined by X-ray CT method, Constr. Build. Mater. 160 (2018) 39-47.. open in new tab
  63. B. Zhou, Y. Uchida, Influence of flowablity, casting time and framework geometry on fiber orientation and mechanical properties of UHPFRC, Cem. Concr. Res. 95 (2017) 164-177. open in new tab
  64. T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, Determination of 3D porosity in steel fibre reinforced SCC beams using X-ray computed tomography, Constr. Build. Mater. 68 (2014) 333-340. open in new tab
  65. Y. Akkaya, A. Peled, S.P. Shah, Parameters related to fiber length and processing in cementitious composites, Mater. Struct. 33 (1999) 515-524. open in new tab
  66. EN 12390-2:2009 Testing Hardened Concrete -Part 2: Making and Curing Specimens for Strength Tests. open in new tab
  67. EN 12390-3:2009 Testing Hardened Concrete -Part 3: Compressive Strength of Test Specimens. open in new tab
  68. V.C. Li, A simplified micromechanical model of compressive strength of fiber- reinforced cementitious composites, Cem. Concr. Res. 14 (2) (1992) 131-141. open in new tab
  69. EN 12390-6:2011 Testing Hardened Concrete -Part 6: Tensile Splitting Strength of Test Specimens. open in new tab
  70. A.M. Neville, Properties of Concrete, John Wiley & Sons, 1996. open in new tab
  71. Instrukcja ITB 194/98 Badanie cech mechanicznych betonu na próbkach wykonanych w formach (in polish). open in new tab
  72. A. Dehghan, K. Peterson, A. Shvarzman, Recycled glass fiber reinforced polymer additions to Portland cement concrete, Constr. Build. Mater. 146 (2017) 238- 250. open in new tab
  73. A. Noushini, K. Vessalas, G. Arabian, B. Samali, Drying shrinkage behaviour of fiber reinforced concrete incorporating polyvinyl alcohol fibers and fly ash, Adv. Civ. Eng. (2014). open in new tab
  74. RILEM TC 162-TDF, Test and design methods for steel fiber reinforced concrete: bending test, Mater. Struct. 35 (2002) 579-582. open in new tab
  75. EN 14651:2005+A1:2007 Test Method for Metallic Fiber Concrete. Measuring the Flexural Tensile Strength (limit of proportionality (LOP), residual). open in new tab
  76. H.N. Linsbauer, E.K. Tschegg, Fracture energy determination of concrete with cube specimens, Zement und Beton 31 (1986) 38-40 (in german).
  77. S. Korte, V. Boel, W. De Corte, G. De Schutter, Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge splitting tests, Constr. Build. Mater. 57 (2014) 1-8. open in new tab
  78. Y. Dai, D. Gruber, H. Harmuth, Determination of the behavior of MgO- refractories using multi-cycle wedge splitting test and digital image correlation, J. Eur. Ceram. Soc. 37 (15) (2017) 5035-5043. open in new tab
  79. J. Suchorzewski, J. Tejchman, M. Nitka, Discrete element method simulations of fracture in concrete under uniaxial compression based on its internal structure, Int. J. Damage Mech. (2017), 1056789517690915. open in new tab
  80. Ł. Skar _ zyń ski, J. Tejchman, Modeling the effect of material composition on the tensile properties of concrete, in: Jaap Weerheijm (Ed.), Understanding the Tensile Properties of Concrete, vol. 48, Woodhead Publishing Limited, 2013, pp. 52-97.
Verified by:
Gdańsk University of Technology

seen 198 times

Recommended for you

Meta Tags