Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography–mass spectrometry - Publication - Bridge of Knowledge

Search

Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography–mass spectrometry

Abstract

The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions,the obtained limit of detection and quantification ranged from 0.0069 to 1.12 ug/mL and 0.014 to 2.24 ug/mL, respectively. The precision (RSD ranged 1.29–6.42%) and recovery (69.43–125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10 ug/mL to 15.06 ug/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes.

Citations

  • 2 7

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Cite as

Full text

download paper
downloaded 345 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF CHROMATOGRAPHY A no. 1517, pages 26 - 34,
ISSN: 0021-9673
Language:
English
Publication year:
2017
Bibliographic description:
Makoś P., Fernandes A., Boczkaj G.: Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography–mass spectrometry// JOURNAL OF CHROMATOGRAPHY A. -Vol. 1517, (2017), s.26-34
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.chroma.2017.08.045
Bibliography: test
  1. A. Latorre, A. Rigol, S. Lacorte, D. Barcelo, Comparison of gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry for the determination of fatty and resin acids in paper mill process waters, J. Chromatogr. A 991 (2003) 205-215. open in new tab
  2. A. Behvandi, A.A. Safekordi, F. Khorasheh, Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study, J. Porous Mater. 24 (2017) 165-178. open in new tab
  3. J. Wu, H.K. Lee, Ion-pair dynamic liquid-phase microextraction combined with injection-port derivatization for the determination of long-chain fatty acids in water samples, J. Chromatogr. A 1133 (2006) 13-20. open in new tab
  4. M. Abalos, J.M. Bayona, J. Pawliszyn, Development of a headspace solid-phase microextraction procedure for the determination of free volatile fatty acids in waste waters, J. Chromatogr. A 873 (2000) 107-115. open in new tab
  5. A. Banel, M. Wasielewska, B. Zygmunt, Application of headspace solid-phase microextraction followed by gas chromatography-mass spectrometry to determine short-chain alkane monocarboxylic acids in aqueous samples, Anal. Bioanal. Chem. 399 (2011) 3299-3303. open in new tab
  6. P.S.C. Schulze, C.F.M. Carvalho, H. Pereira, K.N. Gangadhar, L.M. Schüler, T.F. Santos, J.C.S. Varela, L. Barreira, Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta), Bioresour. Technol. 223 (2017) 175-183. open in new tab
  7. K. Chai, H. Ji, Dual functional adsorption of benzoic acid from wastewater by biological-based chitosan grafted b-cyclodextrin, Chem. Eng. J. 203 (2012) 309-318. open in new tab
  8. R. Thiruvenkatachari, T.O. Kwon, I.S. Moon, Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes, J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 41 (2006) 1685-1697. open in new tab
  9. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633. open in new tab
  10. N.T. Mkhize, T.A.M. Msagati, B.B. Mamba, M. Momba, Determination of volatile fatty acids in wastewater by solvent extraction and gas chromatography, Phys. Chem. Earth 67-69 (2014) 86-92. open in new tab
  11. A.C. Moura de Sena Aquino, M.S. Azevedo, D.H.B. Ribeiro, A.C.O. Costa, E.R. Amante, Validation of HPLC and CE methods for determination of organic acids in sour cassava starch wastewater, Food Chem. 172 (2015) 725-730. open in new tab
  12. A.T. James, A.J.P. Martin, Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid, Biochem. J. 50 (1952) 679-690. open in new tab
  13. W. Ziemer, M. Wortberg, C. Eichberger, J. Gerstel, W. Kerl, Direct aqueous injection with backflush thermal desorption for wastewater monitoring by online GC-MS, Anal. Bioanal. Chem. 397 (2010) 1315-1324. open in new tab
  14. M.A. Ullah, K.-H. Kim, J.E. Szulejko, J. Cho, The gas chromatographic determination of volatile fatty acids in wastewater samples: evaluation of experimental biases in direct injection method against thermal desorption method, Anal. Chim. Acta 820 (2014) 159-167. open in new tab
  15. A. Latorre, A. Rigol, S. Lacorte, D. Barcelo, Comparison of gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry for the determination of fatty and resin acids in paper mill process waters, J. Chromatogr. A 991 (2003) 205-215. open in new tab
  16. N. Li, C. Deng, X. Zhang, Determination of methylmalonic acid and glutaric acid in urine by aqueous-phase derivatization followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry, J. Sep. Sci. 30 (2007) 266-271. open in new tab
  17. F. Ngan, T. Ikesaki, Determination of nine acidic herbicides in water and soil by gas chromatograpy using an electron-capture detector, J. Chromatogr. A 537 (1991) 385-395. open in new tab
  18. A.M.C. Ferreira, M.E.F. Laespada, J.L.P. Pavón, B.M. Cordero, In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations, J. Chromatogr. A 1296 (2013) 70-83. open in new tab
  19. P. Husek, P. Simek, Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying agents, Curr. Pharm. Anal. 2 (2006) 23-43. open in new tab
  20. Y. Sun, X. Wang, Y. Huang, Z. Pan, L. Wang, Derivatization following hollow-fiber microextraction with tetramethylammonium acetate as a dual-function reagent for the determination of benzoic acid and sorbic acid by GC, J. Sep. Sci. 36 (2013) 2268-2276. open in new tab
  21. A. Banel, B. Zygmunt, Application of gas chromatography-mass spectrometry preceded by solvent extraction to determine volatile fatty acids in wastewater of municipal, animal farm and landfill origin, Water Sci. Technol. 63 (2011) 590-597. open in new tab
  22. Á. Sebok, A. Vasanits-Zsigrai, A. Helenkár, Gy. Záray, I. Molnár-Perl, Multiresidue analysis of pollutants as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry, J. Chromatogr. A 1216 (2009) 2288-2301. open in new tab
  23. L. Feng, Y. Huang, H. Wang, Solid-phase microextraction in combination with GC-FID for quantification of the volatile free fatty acids in wastewater from constructed wetlands, J. Chromatogr. Sci. 46 (2008) 577-584. open in new tab
  24. M. Rezaee, Y. Assadi, M.-R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid microextraction, J. Chromatogr. A 1116 (2006) 1-9. open in new tab
  25. G. Boczkaj, M. Kamiński, A. Przyjazny, Process control and investigation of oxidation kinetics of postoxidative effluents using gas chromatography with pulsed flame photometric detector (GC-PFPD), Ind. Eng. Chem. Res. 49 (2010) 12654-12662. open in new tab
  26. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment processes, Ind. Eng. Chem. Res. 53 (2014) 1503-1514. open in new tab
  27. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics of volatile organic compounds emission profiles from hot road bitumens, Chemosphere 107 (2014) 23-30. open in new tab
  28. J. Wisniak, A. Polishuk, Analysis of residuals-a useful tool for phase equilibrium data analysis, Fluid Phase Equilibr. 164 (1999) 61-82. open in new tab
  29. F.R. Mansour, N.D. Danielson, Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool, Talanta 170 (2017) 22-35. open in new tab
  30. W.-L. Liu, Y.-C. Ko, B.-H. Hwang, Z.-G. Li, T.C.-C. Yang, M.-R. Lee, Determination of perfluorocarboxylic acids in water by ion-pair dispersive liquid-liquid microextraction and gas chromatography-tandem mass spectrometry with injection port derivatization, Anal. Chim. Acta 726 (2012) 28-34. open in new tab
  31. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. open in new tab
  32. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, A new procedure for control of treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956. open in new tab
  33. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for examination of degradation of volatile organonitrogen compounds during treatment of industrial effluents, J. Sep. Sci. 40 (2017) 1301-1309. open in new tab
  34. C.-L. Hsu, W.-H. Ding, Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography?mass spectrometry, Talanta 80 (2009) 1025-1028. open in new tab
  35. J. Wu, H.K. Lee, Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry, Anal. Chem. 78 (2006) 7292-7301. open in new tab
  36. F.F. Cantwell, H. Freiser, Kinetics of ion pair extraction, Anal. Chem. 60 (1988) 226-230. open in new tab
  37. E.W. Robb, J.J. Westbrook, Preparation of methyl esters for gas liquid chromatography of acids by pyrolysis of tetramethylammonium salts, Anal. Chem. 35 (1963) 1644-1647. open in new tab
  38. L. Xu, M. Jiang, G. Li, Injection port derivatization following sonication-assisted ion-pair liquid-liquid extraction of nonsteroidal anti-inflammatory drugs, Anal. Chim. Acta 666 (2010) 45-50. open in new tab
  39. Q. Wang, L. Ma, C. Yin, L. Xu, Developments in injection port derivatization, J. Chromatogr. A 1296 (2013) 25-35. open in new tab
  40. A. Fallon, R.F.G. Booth, L.D. Bell, Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier, 2009. open in new tab
  41. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents, Anal. Methods 8 (2016) 3570-3577. open in new tab
  42. T.S.S. Rao, S. Awasthi, Oxidation of alkylaromatics, Eur. J. Chem. 4 (2007) 1-13. open in new tab
Verified by:
Gdańsk University of Technology

seen 141 times

Recommended for you

Meta Tags