Modeling of Ice Phenomena in the Mouth of the Vistula River - Publication - Bridge of Knowledge

Search

Modeling of Ice Phenomena in the Mouth of the Vistula River

Abstract

The mouth of the Vistula River, which is a river outlet located in tideless area, is analyzed. The Vistula River mouth is a man-made, artificial channel which was built in the 19th century in order to prevent the formation of ice jams in the natural river delta. Since the artificial river outlet was constructed, no severe ice-related flood risk situations have ever occurred. However, periodic ice-related phenomena still have an impact on the river operation. In the paper, ice processes in the natural river delta are presented first to refer to the historical jams observed in the Vistula delta. Next, the calibrated mathematical model was applied to perform a series of simulations in the Vistula River mouth for winter storm condition to determine the effects of ice on the water level in the Vistula River and ice jam potential of the river outlet.

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 67 times
Publication version
Accepted or Published Version
License
Copyright (Versita Warsaw and Springer-Verlag Wien 2014)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Acta Geophysica no. 62, pages 893 - 914,
ISSN: 1895-6572
Language:
English
Publication year:
2014
Bibliographic description:
Kolerski T.: Modeling of Ice Phenomena in the Mouth of the Vistula River// Acta Geophysica. -Vol. 62, nr. 4 (2014), s.893-914
DOI:
Digital Object Identifier (open in new tab) 10.2478/s11600-014-0213-x
Bibliography: test
  1. Carr, M.L., and A.M. Tuthill (2012), Modeling of scour-inducing ice effects at Melvin Price Lock and Dam, J. Hydraul. Eng. 138, 1, 85-92, DOI: 10.1061/ (ASCE)HY.1943-7900.0000483. open in new tab
  2. Cyberski, J., M. Grześ, M. Gutry-Korycka, E. Nachlik, and Z.W. Kundzewicz (2006), History of floods on the River Vistula, Hydrol. Sci. J. 51, 5, 799- 817, DOI: 10.1623/hysj.51.5.799. open in new tab
  3. De Padova, D., M. Mossa, S. Sibilla, and E. Torti (2013), 3D SPH modelling of hy- draulic jump in a very large channel, J. Hydraul. Res. 51, 2, 158-173, DOI: 10.1080/00221686.2012.736883. open in new tab
  4. Derecki, J.A., and F.H. Quinn (1986), Record St. Clair River ice jam of 1984, J. Hy- draul. Eng. 112, 12, 1182-1193, DOI: 10.1061/(ASCE)0733-9429(1986) 112:12(1182). open in new tab
  5. Dziaduszko, Z., and J. Malicki (1994), Ice jam formation in Vistula River Outlet in February 1994, Institute of Meteorology Bulletin, IMGW, Gdynia (in Polish).
  6. Gąsiorowski, D., J. Kapinski, T. Kolerski, R. Ostrowski, M. Robakiewicz, M. Skaja, and M. Szmytkiewicz (2004), Modernisation of the Vistula River Outlet optimisation of the jetties by modelling approach, Coastal Eng. 29, 3, 1-4, 3303-3315. open in new tab
  7. Gingold, R.A., and J.J. Monaghan (1977), Smoothed particle hydrodynamics: The- ory and application to non-spherical stars, Mon. Not. Roy. Astr. Soc. 181, 375-389. open in new tab
  8. Grześ, M. (1991), Ice iams and floods on the lower Vistula River, mechanism and processess, Institute of Geography and Spatial Organization, Polish Acad- emy of Sciences, Warszawa. open in new tab
  9. Ji, S., H.T. Shen, Z. Wang, H. Shen, and Q. Yue (2004), Ice dynamics model with a viscoselastic-plastic constitutive law. In: Proc. 17th Int. Ice Symposium, St. Petersburg, Russia, 274-281.
  10. Kolerski, T. (2011), Numerical modeling of ice jam formation in the Włocławek Reservoir, Task Q. 15, 3-4, 283-295. open in new tab
  11. Kolerski, T., and H.T. Shen (2010), St. Clair River ice jam dynamics and possible effect on bed changes. In: Proc. 20th IAHR Int. Symposium on Ice, 14-18 June 2010, Lahti, Finland. open in new tab
  12. Kolerski, T., H.T. Shen, and S. Kioka (2013), A numerical model study on ice boom in a coastal lake, J. Coastal Res. 29, 6a, 177-186, DOI: 10.2112/ JCOASTRES-D-12-00236.1. open in new tab
  13. Kossak, J.M. (1840), Hydrographic map of the Gdańsk area (Hydrographische Karte von der ortlishen Lage des Weichselstormes nebst Environs bei Danzig), State Archives in Gdańsk, Poland (in German).
  14. Liu, L., and H.T. Shen (2003), A two-dimensional characteristic upwind finite ele- ment method for transitional open channel flow, Rep. 03-04, Department of Civil and Environ. Eng., Clarkson University, Potsdam, USA.
  15. Lu, S., H.T. Shen, and R.D. Crissman (1999), Numerical study of ice dynamics in upper Niagara River, J. Cold Reg. Eng. 13, 2, 78-102, DOI: 10.1061/ (ASCE)0887-381X(1999)13:2(78). open in new tab
  16. Lucy, L.B. (1977), A numerical approach to the testing of the fission hypothesis, Astron. J. 82, 1013-1024, DOI: 10.1086/112164. open in new tab
  17. Łomniewski, K. (1960), Vistula estuary, J. Polish Geol. Soc. 29, 4, 391-418 (in Pol- ish).
  18. Majewski, W. (2007), Flow in open channels under the influence of ice cover, Acta Geophys. 55, 1, 11-22, DOI: 10.2478/s11600-006-0041-8. open in new tab
  19. Majewski, W., E. Jasińska, J. Kapiński, R. Ostrowski, M. Robakiewicz, M. Szmyt- kiewicz, A. Walter, D. Gąsiorowski, T. Kolerski, M. Skaja, A. Dzięgie- lewski, T. Perfumowicz, D. Piotrowska, W. Massalski, and K. Mioduszew- ski (2003), The study on improving Vistula mouth conveyance, Institute of Hydroengineering, Gdańsk, Poland (in Polish).
  20. Monaghan, J.J. (1982), Why particle methods work, SIAM J. Sci. Stat. Comp. 3, 4, 422-433, DOI: 10.1137/0903027. open in new tab
  21. Pruszak, Z., P. Van Ninh, M. Szmytkiewicz, N.M. Hung, and R. Ostrowski (2005), Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta), Oceanologia 47, 3, 365-385. open in new tab
  22. Shen, H.T. (2010), Mathematical modeling of river ice processes, Cold Reg. Sci. Technol. 62, 1, 3-13, DOI: 10.1016/j.coldregions.2010.02.007 open in new tab
  23. Shen, H.T., J. Su, and L. Liu (2000), SPH simulation of river ice dynamics, J. Com- put. Phys. 165, 2, 752-770, DOI: 10.1006/jcph.2000.6639. open in new tab
  24. Shen, H.T., L. Gao, T. Kolerski, and L. Liu (2008), Dynamics of ice jam formation and release, J. Coastal Res. S52, 25-32, DOI: 10.2112/1551-5036- 52.sp1.25. open in new tab
  25. Staroszczyk, R. (2010), Simulation of dam-break flow by a corrected smoothed par- ticle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech. 57, 1, 61-79. open in new tab
  26. Takeda, H., S.M. Miyama, and M. Sekiya (1994), Numerical simulation of viscous flow by smoothed particle hydrodynamics, Prog. Theor. Phys. 92, 5, 939- 960, DOI: 10.1143/ptp/92.5.939. open in new tab
  27. USACE, (1984), April 1984 ice jam report; open in new tab
  28. Wang, Z., and H.T. Shen (1999), Lagrangian simulation of one-dimensional dam- break flow, J. Hydraul. Eng. 125, 11, 1217-1220, DOI: 10.1061/(ASCE) 0733-9429(1999)125:11(1217). open in new tab
  29. White, K.D. (1999), Hydraulic and physical properties affecting ice jams, Rep. 99- 11, Cold Regions Research and Engineering Laboratory, Hanover, USA. open in new tab
Verified by:
Gdańsk University of Technology

seen 137 times

Recommended for you

Meta Tags