Modelling Wetland Growing Season Rainfall Interception Losses Based on Maximum Canopy Storage Measurements - Publication - Bridge of Knowledge

Search

Modelling Wetland Growing Season Rainfall Interception Losses Based on Maximum Canopy Storage Measurements

Abstract

This study estimates rainfall interception losses from natural wetland ecosystems based on maximum canopy storage measurements. Rainfall interception losses play an important role in water balance, which is crucial in wetlands, and has not yet been thoroughly studied in relation to this type of ecosystem. Maximum canopy storage was measured using the weight method. Based on these measurements, daily values of interception losses were estimated and then used to calculate long-term interception losses based on precipitation and potential evapotranspiration data for the 1971–2015 period. Depending mainly on the number of days with precipitation, the results show that total interception losses for the growing season as well as monthly interception losses are around 13% of gross rainfall. This value is similar to the values observed for some forests. Hence, interception losses should not be disregarded in hydrologic models of wetlands, especially because data trends in meteorological conditions (mainly number of days with precipitation) show that interception losses will increase in the future if those trends stay the same.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 41 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Water no. 10, edition 1, pages 1 - 16,
ISSN: 2073-4441
Language:
English
Publication year:
2018
Bibliographic description:
Ciężkowski W., Berezowski T., Kleniewska M., Szporak-Wasilewska S., Chormański J.: Modelling Wetland Growing Season Rainfall Interception Losses Based on Maximum Canopy Storage Measurements// Water. -Vol. 10, iss. 1 (2018), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.3390/w10010041
Bibliography: test
  1. Wood, M.K.; Jones, T.L.; Vera-Cruz, M.T. Rainfall interception by selected plants in the Chihuahuan desert. J. Range Manag. 1998, 51, 91-96. [CrossRef] open in new tab
  2. Van Dijk, A.; Bruijnzeel, L.A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J. Hydrol. 2001, 247, 230-238. [CrossRef] open in new tab
  3. Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191-206. [CrossRef] open in new tab
  4. Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; open in new tab
  5. Bradley, D.J.; Gilbert, G.S.; Parker, I.M. Susceptibility of clover species to fungal infection: The interaction of leaf surface traits and environment. Am. J. Bot. 2003, 90, 857-864. [CrossRef] [PubMed] open in new tab
  6. Brueggemann, E.; Spindler, G. Wet and dry deposition of sulphur at the site melpitz in East Germany-In memorium dedicated to wolfgang rolle. Water Air Soil Pollut. 1999, 109, 81-99. [CrossRef] open in new tab
  7. Wesely, M.L.; Sisterson, D.L.; Jastrow, J.D. Observations of the chemical-properties of dew on vegetation that affect the dry deposition of SO 2 . J. Geophys. Res. Atmos. 1990, 95, 7501-7514. [CrossRef] open in new tab
  8. Brewer, C.A.; Smith, W.K. Patterns of leaf surface wetness for montane and subalpine plants. Plant Cell Environ. 1997, 20, 1-11. [CrossRef] open in new tab
  9. Hanba, Y.T.; Moriya, A.; Kimura, K. Effect of leaf surface wetness and wettability on photosynthesis in bean and pea. Plant Cell Environ. 2004, 27, 413-421. [CrossRef] open in new tab
  10. Savenije, H.H.G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 2004, 18, 1507-1511. [CrossRef] open in new tab
  11. Grayson, R.B.; Moore, I.D.; McMahon, T.A. Physically based hydrologic modeling: 1. A terrain-based model for investigative purposes. Water Resour. Res. 1992, 28, 2639-2658. [CrossRef] open in new tab
  12. Garrote, L.; Bras, R.L. A distributed model for real-time flood forecasting using digital elevation models. J. Hydrol. 1995, 167, 279-306. [CrossRef] open in new tab
  13. Reggiani, P.; Rientjes, T.H.M. Flux parameterization in the representative elementary watershed approach: Application to a natural basin. Water Resour. Res. 2005, 41, 18. [CrossRef] open in new tab
  14. Liu, Z.Y.; Todini, E. Towards a comprehensive physically-based rainfall-runoff model. Hydrol. Earth Syst. Sci. 2002, 6, 859-881. [CrossRef] open in new tab
  15. Beven, K.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43-69. [CrossRef] open in new tab
  16. Abbot, M.; Bathurst, J.; Cunge, J.; O'Connell, P.; Rasmussen, J. An introduction to the European hydrologic system-systeme hydologique Europeen, "She", 1: History and philosophy of a physically based, distributed modelling system. J. Hydrol. 1990, 87, 45-59. [CrossRef] open in new tab
  17. Liu, Y.; De Smedt, F. Wetspa extension, a gis-based hydrologic model for flood prediction and watershed management. Vrije Universiteit Brussel Belgium 2004, 1, e108.
  18. Grah, R.F.; Wilson, C.C. Some components of rainfall interception. J. For. 1944, 42, 890-898. open in new tab
  19. Wohlfahrt, G.; Bianchi, K.; Cernusca, A. Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow. J. Hydrol. 2006, 319, 383-390. [CrossRef] open in new tab
  20. Yu, K.L.; Pypker, T.G.; Keim, R.F.; Chen, N.; Yang, Y.B.; Guo, S.Q.; Li, W.J.; Wang, G. Canopy rainfall storage capacity as affected by sub-alpine grassland degradation in the Qinghai-Tibetan Plateau, China. Hydrol. Process. 2012, 26, 3114-3123. [CrossRef] open in new tab
  21. Thurow, T.L.; Blackburn, W.H.; Warren, S.D.; Taylor, C.A. Rainfall interception by midgrass, shortgrass, and live oak mottes. J. Range Manag. 1987, 40, 455-460. [CrossRef] open in new tab
  22. Jetten, V.G. Interception of tropical rain forest: Performance of a canopy water balance model. Hydrol. Process. 1996, 10, 671-685. [CrossRef] open in new tab
  23. Germer, S.; Elsenbeer, H.; Moraes, J.M. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondonia, Brazil). Hydrol. Earth Syst. Sci. 2006, 10, 383-393. [CrossRef] open in new tab
  24. Czikowsky, M.J.; Fitzjarrald, D.R. Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. J. Hydrol. 2009, 377, 92-105. [CrossRef] open in new tab
  25. Holder, C.D. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. For. Ecol. Manag. 2004, 190, 373-384. [CrossRef] open in new tab
  26. Aboal, J.R.; Jimenez, M.S.; Morales, D.; Hernandez, J.M. Rainfall interception in laurel forest in the Canary Islands. Agric. For. Meteorol. 1999, 97, 73-86. [CrossRef] open in new tab
  27. Dykes, A.P. Rainfall interception from a lowland tropical rainforest in Brunei. J. Hydrol. 1997, 200, 260-279. [CrossRef] open in new tab
  28. Grelle, A.; Lundberg, A.; Lindroth, A.; Moren, A.S.; Cienciala, E. Evaporation components of a boreal forest: Variations during the growing season. J. Hydrol. 1997, 197, 70-87. [CrossRef] open in new tab
  29. Shachnovich, Y.; Berliner, P.R.; Bar, P. Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone. J. Hydrol. 2008, 349, 168-177. [CrossRef] open in new tab
  30. Sraj, M.; Brilly, M.; Mikos, M. Rainfall interception by two deciduous mediterranean forests of contrasting stature in Slovenia. Agric. For. Meteorol. 2008, 148, 121-134. [CrossRef] open in new tab
  31. Dunkerley, D.L.; Booth, T.L. Plant canopy interception of rainfall and its significance in a banded landscape, arid western New South Wales, Australia. Water Resour. Res. 1999, 35, 1581-1586. [CrossRef] open in new tab
  32. Tromble, J.M. Interception of rainfall by tarbush. J. Range Manag. 1983, 36, 525-526. [CrossRef] open in new tab
  33. Kołodziej, J.; Liniewicz, K.; Bednarek, H. Intercepcja opadów atmosferycznych w łanach zbóż. Acta Agrophys. 2005, 6, 381-391. (In Polish)
  34. Rutter, A.J.; Robins, P.C.; Morton, A.J.; Kershaw, K.A. Predictive model of rainfall interception in forests. 1. Derivation of model from observations in a plantation of corsican pine. Agric. Meteorol. 1972, 9, 367-384. [CrossRef] open in new tab
  35. Berezowski, T.; Chormański, J.; Kleniewska, M.; Szporak-Wasilewska, S. Towards rainfall interception capacity estimation using ALS LiDAR data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July 2015; pp. 735-738. open in new tab
  36. Suliga, J.; Chormanski, J.; Szporak-Wasilewska, S.; Kleniewska, M.; Berezowski, T.; van Griensven, A.; Verbeiren, B. Derivation from the Landsat 7 NDVI and ground truth validation of LAI and interception storage capacity for wetland ecosystems in Biebrza Valley, Poland. In Proceedings of the SPIE Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, Toulouse, France, 22-24 September 2015. open in new tab
  37. De Jong, S.M.; Jetten, V.G. Estimating spatial patterns of rainfall interception from remotely sensed vegetation indices and spectral mixture analysis. Int. J. Geogr. Inf. Sci. 2007, 21, 529-545. [CrossRef] open in new tab
  38. Gomez, J.A.; Giraldez, J.V.; Fereres, E. Rainfall interception by olive trees in relation to leaf area. Agric. Water Manag. 2001, 49, 65-76. [CrossRef] open in new tab
  39. Hoyningen-Huene, J.V. Die Interzeption des Niederschlages in Landwirtschaftlichen Pflanzenbeständen;
  40. Verbeiren, B.; Khanh Nguyen, H.; Wirion, C.; Batelaan, O. An earth observation based method to assess the influence of seasonal dynamics of canopy interception storage on the urban water balance. Belgeo 2016, 2016. [CrossRef] open in new tab
  41. Wirion, C.; Ho, K.N.; Bauwens, W.; Verbeiren, B. Using remote sensing to describe urban surface properties for improved hydrological modelling. In Proceedings of the 10th International Urban Drainage Modeling Conference, Quebec, QC, Canada, 20-23 September 2015. open in new tab
  42. Górniak, A. Klimat i termika wód powierzchniowych kotliny biebrzańskiej. In Kotlina Biebrzańska i Biebrzański Park Narodowy: Aktualny Stan, Zagrożenia i Potrzeby Czynnej OchronyŚrodowiska; Ekonomia iŚrodowisko: Białystok, Poland, 2004. (In Polish)
  43. Kossowska-Cezak, U.; Olszewski, K.; Przybylska, G. Climate of the Biebrza Valley. Zesz. Probl. Postepow Nauk Rolniczych 1991, 372, 119-158. (In Polish) open in new tab
  44. West, N.E.; Gifford, G.F. Rainfall interception by cool-desert shrubs. J. Range Manag. 1976, 29, 171-172. [CrossRef] open in new tab
  45. Ignar, S.; Węglewska, A.; Szporak-Wasilewska, S.; Chormański, J. Spatial and temporal variability of the interception in the natural wetland valley, the lower Biebrza basin case study. Ann. Warsaw Univ. Life Sci.-SGGW Land Reclam. 2013, 45, 111-119. [CrossRef] open in new tab
  46. Calder, I.R.; Hall, R.L.; Rosier, P.T.W.; Bastable, H.G.; Prasanna, K.T. Dependence of rainfall interception on drop size: 2. Experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species. J. Hydrol. 1996, 185, 379-388. [CrossRef] open in new tab
  47. Szporak-Wasilewska, S.; Szatyłowicz, J.; Okruszko, T.; Ignar, S. Application of the surface energy balance system model (SEBS) for mapping evapotranspiration of extensively used river valley with wetland vegetation. Towards Horiz. 2013, 2020, 929-942.
  48. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. open in new tab
  49. Gash, J.H.C. Analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43-55. [CrossRef] open in new tab
  50. Kępińska-Kasprzak, M.; Mager, P. Thermal growing season in Poland calculated by two different methods. Ann. Warsaw Univ. Life Sci. Land Reclam. 2015, 47, 261-273. [CrossRef] open in new tab
  51. McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test, Version 2.2; The R Foundation for Statistical Computing: Vienna, Austria, 2015.
  52. Monson, R.K.; Grant, M.C.; Jaeger, C.H.; Schoettle, A.W. Morphological causes for the retention of precipitation in the crowns of alpine plants. Environ. Exp. Bot. 1992, 32, 319-327. [CrossRef] open in new tab
  53. Pypker, T.G.; Bond, B.J.; Link, T.E.; Marks, D.; Unsworth, M.H. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth douglas-fir forest. Agric. For. Meteorol. 2005, 130, 113-129. [CrossRef] open in new tab
  54. Klaassen, W.; Bosveld, F.; de Water, E. Water storage and evaporation as constituents of rainfall interception. J. Hydrol. 1998, 212, 36-50. [CrossRef] open in new tab
  55. Gash, J.; Wright, I.; Lloyd, C.R. Comparative estimates of interception loss from three coniferous forests in Great Britain. J. Hydrol. 1980, 48, 89-105. [CrossRef] open in new tab
  56. Loustau, D.; Berbigier, P.; Granier, A. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of gash's analytical model of interception. J. Hydrol. 1992, 138, 469-485. [CrossRef] open in new tab
  57. Dunkerley, D. Measuring interception loss and canopy storage in dryland vegetation: A brief review and evaluation of available research strategies. Hydrol. Process. 2000, 14, 669-678. [CrossRef] open in new tab
  58. Hormann, G.; Branding, A.; Clemen, T.; Herbst, M.; Hinrichs, A.; Thamm, F. Calculation and simulation of wind controlled canopy interception of a beech forest in northern Germany. Agric. For. Meteorol. 1996, 79, 131-148. [CrossRef] open in new tab
  59. Levia, D.F.; Keim, R.F.; Carlyle-Moses, D.E.; Frost, E.E. Throughfall and stemflow in wooded ecosystems. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; open in new tab
  60. Levia, D.F., CarlyleMoses, D., Tanaka, T., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 216, pp. 425-443.
  61. Calder, I.R. Evaporation in the Uplands;
  62. Kozłowski, R.; Jóźwiak, M. Transformacja opadów atmosferycznych w strefie drzew wybranych ekosystemów leśnych w górachświętokrzyskich = the transformation of precipitation in the tree canopy in selected forest ecosystems of poland'sświętokrzyskie mountains. Przegl. Geogr. 2017, 89, 133-153. (In Polish) [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 114 times

Recommended for you

Meta Tags