Neohypoplasticity Revisited - Publication - Bridge of Knowledge

Search

Neohypoplasticity Revisited

Abstract

Citations

Authors (3)

Cite as

Full text

download paper
downloaded 8 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
ISSN: 0363-9061
Publication year:
2023
DOI:
Digital Object Identifier (open in new tab) doi: 10.1002/nag.3640
Bibliography: test
  1. M. Arnold and I. Herle. Comparison of vibrocompaction methods by numerical simulations. Inter- national Journal for Numerical and Analytical Methods in Geomechanics, 33(16):1823-1838, 2009. open in new tab
  2. E. Bauer. Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations, 36(1):13-26, 1996. open in new tab
  3. Y. F. Dafalias and M. T. Manzari. Simple plasticity sand model accounting for fabric change effects. Journal of Engineering Mechanics, 130(6):622-634, 2004. open in new tab
  4. J. Duque, M. Yang, W. Fuentes, D. Mašín, and M. Taiebat. Characteristic limitations of advanced plasticity and hypoplasticity models for cyclic loading of sands. Acta Geotechnica, 17(6):2235-2257, 2022. open in new tab
  5. W. Fuentes. Contributions in mechanical modeling of fill materials. Dissertation, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 179, 2014.
  6. C. E. Grandas Tavera, T. Triantafyllidis, and L. Knittel. A constitutive model with a historiotropic yield surface for sands. In Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice, pages 13-43. Springer, Cham, 2020. open in new tab
  7. G. Gudehus. A comparison of some constitutive laws for soils under radially symmetrical load- ing and unloading. In Proceedings of the 3rd International Conference on Numerical Methods in Geomechanics, Aachen, volume 4, pages 1309-1323. Balkema, 1979.
  8. G. Gudehus. A comprehensive constitutive equation for granular materials. Soils and Foundations, 36(1):1-12, 1996. open in new tab
  9. I. Herle and G. Gudehus. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-frictional Materials, 4(5):461-486, 1999. open in new tab
  10. L. Knittel, T. Wichtmann, A. Niemunis, G. Huber, E. Espino, and T. Triantafyllidis. Pure elastic stiffness of sand represented by response envelopes derived from cyclic triaxial tests with local strain measurements. Acta Geotechnica, 15(8):2075-2088, 2020. open in new tab
  11. D. Kolymbas. An outline of hypoplasticity. Archive of Applied Mechanics, 61(3):143-151, 1991. open in new tab
  12. D. Kolymbas and G. Medicus. Genealogy of hypoplasticity and barodesy. International Journal for Numerical and Analytical Methods in Geomechanics, 40(18):2532-2550, 2016. open in new tab
  13. I. Loges and A. Niemunis. Neohypoplasticity -estimation of small strain stiffness. In T. Triantafyl- lidis, editor, Holistic Simulation of Geotechnical Installation Processes, volume 77 of Lecture Notes in Applied and Computational Mechanics, pages 163-180. Springer International Publishing, Cham, 2015. open in new tab
  14. J. Machaček, P. Staubach, C. E. Grandas-Tavera, T. Wichtmann, and H. Zachert. On the automatic parameter calibration of a hypoplastic soil model. Acta Geotechnica, 17(11):5253-5273, 2022. open in new tab
  15. J. Machaček, P. Staubach, M. Tafili, H. Zachert, and T. Wichtmann. Investigation of three sophis- ticated constitutive soil models: From numerical formulations to element tests and the analysis of vibratory pile driving tests. Computers and Geotechnics, 138:104276, 2021. open in new tab
  16. D. Mašín. Modelling of Soil Behaviour with Hypoplasticity. Springer International Publishing, Cham, 2019. open in new tab
  17. H. Matsuoka and T. Nakai. Stress-strain relationship of soil based on the smp, constitutive equations of soils. In S. Murayama and A. N. Schofield, editors, Speciality Session 9, 1977. open in new tab
  18. S. Nagula, M. Nguyen, J. Grabe, J. Kardel, and T. Bahl. Field measurements and numerical analysis of vibroflotation of sand. Géotechnique, 72(10):882-898, 2022. open in new tab
  19. A. Niemunis. Extended hypoplastic models for soils. Habilitation, Publications of the Institut für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Issue No. 34, 2003.
  20. A. Niemunis and C. E. Grandas Tavera. Computer aided calibration, benchmarking and check-up of constitutive models for soils. some conclusions for neohypoplasticity. In Holistic Simulation of Geotechnical Installation Processes, pages 168-192. Springer, Cham, 2017. open in new tab
  21. A. Niemunis and C. E. Grandas Tavera. Essential concepts of neohypoplasticity. In Wei Wu, editor, Desiderata Geotechnica, Springer eBooks Engineering, pages 132-142. Springer, Cham, 2019. open in new tab
  22. A. Niemunis, C. E. Grandas Tavera, and T. Wichtmann. Peak stress obliquity in drained and undrained sands. simulations with neohypoplasticity. In Holistic Simulation of Geotechnical Instal- lation Processes, pages 85-114. Springer, Cham, 2016. open in new tab
  23. A. Niemunis and I. Herle. Hypoplastic model for cohesionless soils with elastic strain range. Me- chanics of Cohesive-frictional Materials, 2(4):279-299, 1997. open in new tab
  24. A. Niemunis, L. F. Prada-Sarmiento, and C. E. Grandas Tavera. Extended paraelasticity and its application to a boundary value problem. Acta Geotechnica, 6(2):81-92, 2011. open in new tab
  25. A. Niemunis, L. F. Prada-Sarmiento, and C. E. Grandas Tavera. Paraelasticity. Acta Geotechnica, 6(2):67-80, 2011. open in new tab
  26. A. Niemunis, T. Wichtmann, and T. Triantafyllidis. A high-cycle accumulation model for sand. Computers and Geotechnics, 32(4):245-263, 2005. open in new tab
  27. P. Norlyk, K. Sørensen, L. V. Andersen, K. K. Sørensen, and H. H. Stutz. Holistic simulation of a subsurface inflatable geotechnical energy storage system using fluid cavity elements. Computers and Geotechnics, 127:103722, 2020. open in new tab
  28. V. A. Osinov. Wave-induced liquefaction of a saturated sand layer. Continuum Mech. Thermodyn, 12:325-339, 2000. open in new tab
  29. V. A. Osinov. Large-strain dynamic cavity expansion in a granular material. Journal of Engineering Mathematics, 52(1-3):185-198, 2005. open in new tab
  30. V. A. Osinov, S. Chrisopoulos, and T. Triantafyllidis. Numerical study of the deformation of satu- rated soil in the vicinity of a vibrating pile. Acta Geotechnica, 8(4):439-446, 2013. open in new tab
  31. V. A. Osinov, S. Chrisopoulos, and T. Triantafyllidis. Numerical analysis of the tunnel-soil interaction caused by an explosion in the tunnel. Soil Dynamics and Earthquake Engineering, 122:318-326, 2019. open in new tab
  32. L. F. Prada-Sarmiento. Paraelastic description of small-strain soil behaviour. Dissertation, Publi- cations of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 173, 2011. open in new tab
  33. P. Staubach, J. Machaček, and T. Wichtmann. Large-deformation analysis of pile installation with subsequent lateral loading: Sanisand vs. hypoplasticity. Soil Dynamics and Earthquake Engineering, 151:106964, 2021. open in new tab
  34. A. S. Vesić. Analysis of ultimate loads of shallow foundations. Journal of the Soil Mechanics and Foundations Division, 99(1):45-73, 1973. open in new tab
  35. P.-A. von Wolffersdorff. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-frictional Materials, 1(3):251-271, 1996. open in new tab
  36. T. Wichtmann. Soil behaviour under cyclic loading -experimental observations, constitutive de- scription and applications. Habilitation, Publications of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Issue No. 181, 2016. open in new tab
  37. T. Wichtmann, W. Fuentes, and T. Triantafyllidis. Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. sanisand vs. isa. Soil Dynamics and Earthquake Engineering, 124:172-183, 2019. open in new tab
  38. T. Wichtmann, M. A. Navarrete Hernández, and T. Triantafyllidis. On the influence of a non- cohesive content of fines on the small strain stiffness of quartz sand. Soil Dynamics and Earthquake Engineering, 69(2):103-114, 2014. open in new tab
  39. T. Wichtmann and T. Triantafyllidis. Influence of the grain size distribution curve of quartz sand on the small strain shear modulus gmax. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 135(10):1404-1418, 2009. open in new tab
  40. T. Wichtmann and T. Triantafyllidis. Stiffness and damping of clean quartz sand with various grain size distribution curves. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 140(3), 2014. open in new tab
  41. T. Wichtmann and T. Triantafyllidis. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part i-tests with monotonic loading and stress cycles. Acta Geotechnica, 11(4):739-761, 2016. open in new tab
  42. T. Wichtmann and T. Triantafyllidis. An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part ii-tests with strain cycles and combined loading. Acta Geotechnica, 11(4):763-774, 2016. open in new tab
  43. M. Wotzlaw, D. Aubram, and F. Rackwitz. Numerical analysis of deep vibrocompaction at small and full scale. Computers and Geotechnics, 157:105321, 2023. open in new tab
  44. W. Wu, E. Bauer, and D. Kolymbas. Hypoplastic constitutive model with critical state for granular materials. Mechanics of Materials, 23(1):45-69, 1996. open in new tab
Verified by:
No verification

seen 10 times

Recommended for you

Meta Tags