Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm - Publication - Bridge of Knowledge

Search

Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm

Abstract

A problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and developing original specialised evolutionary operators. This resulted in a compromise between the size of neural network and its accuracy in capturing the response of the mathematical model under which it has been learnt. The research involved an extended validation study based on data generated from a mathematical model of an exemplary system as well as the fast processes occurring in a pressurised water nuclear reactor. The obtaining simulation results demonstrate the high effectiveness of the devised neural (black-box) models of dynamic systems with time delays.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Monographic publication
Type:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language:
English
Publication year:
2022
Bibliographic description:
Laddach K., Łangowski R.: Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm// Intelligent and Safe Computer Systems in Control and Diagnostics/ : , 2022, s.328-339
DOI:
Digital Object Identifier (open in new tab) 10.1007/978-3-031-16159-9_27
Sources of funding:
  • IDUB
Verified by:
Gdańsk University of Technology

seen 114 times

Recommended for you

Meta Tags