Nodal models of Pressurized Water Reactor core for control purposes – A comparison study - Publication - Bridge of Knowledge

Search

Nodal models of Pressurized Water Reactor core for control purposes – A comparison study

Abstract

The paper focuses on the presentation and comparison of basic nodal and expanded multi-nodal models of the Pressurized Water Reactor (PWR) core, which includes neutron kinetics, heat transfer between fuel and coolant, and internal and external reactivity feedback processes. In the expanded multi-nodal model, the authors introduce a novel approach to the implementation of thermal power distribution phenomena into the multi-node model of reactor core. This implementation has the form of thermal power distribution coefficients which approximate the thermal power generation profile in the reactor. It is assumed in the model that the thermal power distribution is proportional to the axial distribution of neutron flux in the un-rodded and rodded reactor core regions, as a result of control rod bank movements. In the paper, the authors propose a methodology to calculate those power distribution coefficients, which bases on numerical solutions of the transformed diffusion equations for the un-rodded and rodded reactor regions, respectively. Introducing power distribution coefficients into the expanded multi-nodal model allows to achieve advanced capabilities that can be efficiently used in design and synthesis of more advanced and complex control algorithms for PWR reactor core, for instance in the field of reactor temperature distribution control.

Citations

  • 2 6

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Cite as

Full text

download paper
downloaded 51 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
NUCLEAR ENGINEERING AND DESIGN no. 322, pages 444 - 463,
ISSN: 0029-5493
Language:
English
Publication year:
2017
Bibliographic description:
Puchalski B., Rutkowski T. A., Duzinkiewicz K.: Nodal models of Pressurized Water Reactor core for control purposes – A comparison study// NUCLEAR ENGINEERING AND DESIGN. -Vol. 322, (2017), s.444-463
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.nucengdes.2017.07.005
Bibliography: test
  1. Dong, Z., Huang, X., Feng, J., Zhang, L., 2009. Dynamic model for control system design and simulation of a low temperature nuclear reactor. Nuclear Engineering and Design 239, 2141-2151. doi:10.1016/j.nucengdes.2009. 05.006. open in new tab
  2. Dong, Z., Huang, X., Zhang, L., 2010. A nodal dynamic model for control system design and simulation of an MHTGR core. Nuclear Engineering and Design 240, 1251-1261. doi:10.1016/j.nucengdes.2009.12.032. open in new tab
  3. Duderstadt, J.J., Hamilton, L.J., 1976. Nuclear reactor analysis. Wiley. open in new tab
  4. Espinosa-Paredes, G., Polo-Labarrios, M.A., Espinosa-Martínez, E.G., Valle- Gallegos, E.d., 2011. Fractional neutron point kinetics equations for nuclear reactor dynamics. Annals of Nuclear Energy 38, 307-330. doi:10.1016/j. anucene.2010.10.012. open in new tab
  5. Fazekas, C., Szederkényi, G., Hangos, K., 2007. A simple dynamic model of the primary circuit in VVER plants for controller design purposes. Nuclear Engineering and Design 237, 1071-1087. doi:10.1016/j.nucengdes.2006. 12.002. open in new tab
  6. Fortum, VTT, 2017. Apros -Dynamic Process Simulation Software for Nuclear and Thermal Power Plant Applications. URL: http://www.apros.fi/en.
  7. Guimarães, L.N.F., Oliveira, N.d.S., Borges, E.M., 2008. Derivation of a nine variable model of a U-tube steam generator coupled with a three-element controller. Applied Mathematical Modelling 32, 1027-1043. doi:10.1016/j. apm.2007.02.022. open in new tab
  8. Han, G.Y., 2000. A mathematical model for the thermal-hydraulic analysis of nuclear power plants. International Communications in Heat and Mass Transfer 27, 795-805. doi:10.1016/S0735-1933(00)00160-3. open in new tab
  9. Kapernick, J.R., 2015. Dynamic Modeling of a Small Modular Reactor for Control and Monitoring. Ph.D. thesis. University of Tennessee.
  10. Karla, T., Tarnawski, J., Duzinkiewicz, K., 2015. Cross-platform real-time nu- clear reactor basic principle simulator, in: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE. pp. 1074-1079. doi:10.1109/MMAR.2015.7284028. open in new tab
  11. Kerlin, T., 1978. Dynamic Analysis and Control of Pressurized Water Reactors, pp. 103-212. doi:10.1016/B978-0-12-012714-6.50008-8. open in new tab
  12. Kulkowski, K., Kobylarz, A., Grochowski, M., Duzinkiewicz, K., 2015. Dynamic model of nuclear power plant steam turbine. Archives of Control Sciences 25, 65-86. doi:10.1515/acsc-2015-0005. open in new tab
  13. Lewis, E.E., 2008. Fundamentals of Nuclear Reactor Physics. Elsevier. doi:10. 1016/B978-0-12-370631-7.X0001-0. open in new tab
  14. Liu, X., 2015. Modeling and Simulation of a Prototypical Advanced Reactor. Ph.D. thesis. University of Tennessee.
  15. Naghedolfeizi, M., 1990. Dynamic Modeling of a Pressurized Water Reactor Plant for Diagnostics and Control. Ph.D. thesis. University of Tennessee. open in new tab
  16. Nowak, T.K., Duzinkiewicz, K., Piotrowski, R., 2014a. Fractional neutron point kinetics equations for nuclear reactor dynamics Numerical solution investi- gations. Annals of Nuclear Energy 73, 317-329. doi:10.1016/j.anucene. 2014.07.001. open in new tab
  17. Nowak, T.K., Duzinkiewicz, K., Piotrowski, R., 2014b. Numerical Solution of Fractional Neutron Point Kinetics Model in Nuclear Reactor. Archives of Control Sciences 24, 129-154. doi:10.2478/acsc-2014-0009. open in new tab
  18. Nowak, T.K., Duzinkiewicz, K., Piotrowski, R., 2015. Numerical solution anal- ysis of fractional point kinetics and heat exchange in nuclear reactor. Nuclear Engineering and Design 281, 121-130. doi:10.1016/j.nucengdes.2014.11. 028. open in new tab
  19. Perillo, S.R.P., 2010. Multi-Modular Integral Pressurized Water Reactor Control and Operational Reconfiguration for a Flow Control Loop. Ph.D. thesis. University of Tennessee. open in new tab
  20. Puchalski, B., Duzinkiewicz, K., Rutkowski, T., 2015a. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nu- clear power plant. Archives of Control Sciences 25, 429-444. doi:10.1515/ acsc-2015-0028. open in new tab
  21. Puchalski, B., Rutkowski, T., Tarnawski, J., Duzinkiewicz, K., 2015b. Compar- ison of tuning procedures based on evolutionary algorithm for multi-region fuzzy-logi PID controller for non-linear plant, in: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE. pp. 897-902. doi:10.1109/MMAR.2015.7283996. open in new tab
  22. Puchalski, B., Rutkowski, T.A., Duzinkiewicz, K., 2016. Multi-nodal PWR reactor model -Methodology proposition for power distribution coefficients calculation, in: 2016 21st International Conference on Methods and Models in Automation and Robotics, MMAR 2016, IEEE. pp. 385-390. doi:10.1109/ MMAR.2016.7575166. open in new tab
  23. Sharma, G., Bandyopadhyay, B., Tiwari, A., 2003. Spatial control of a large pressurized heavy water reactor by fast output sampling technique. IEEE Transactions on Nuclear Science 50, 1740-1751. doi:10.1109/TNS.2003. 818271. open in new tab
  24. Sokolski, P., Rutkowski, T.A., Duzinkiewicz, K., 2016. Simplified, multiregional fuzzy model of a nuclear power plant steam turbine, in: 2016 21st Inter- national Conference on Methods and Models in Automation and Robotics (MMAR), IEEE. pp. 379-384. doi:10.1109/MMAR.2016.7575165. open in new tab
  25. Tarnawski, J., Karla, T., 2016. Real-time simulation in non real-time envi- ronment, in: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE. pp. 577-582. doi:10.1109/MMAR. 2016.7575200. open in new tab
  26. Tiwari, A., Banyopadhyay, B., Govindarajan, G., 1996. Spatial control of a large pressurized heavy water reactor. IEEE Transactions on Nuclear Science 43, 2440-2453. doi:10.1109/23.531794. open in new tab
  27. Zhang, T., 2012. Comparison of Distributed Parameter and Multi-lump Models for a Pressurized Water Reactor Core. Ph.D. thesis. Arizona State University. open in new tab
  28. Zhang, T., E. Holbert, K., 2013. Frequency Domain Comparison of Multi- lump and Distributed Parameter Models for Pressurized Water Reactor Cores. open in new tab
  29. American Journal of Energy Research 1, 17-24. doi:10.12691/ajer-1-1-3. open in new tab
Verified by:
Gdańsk University of Technology

seen 271 times

Recommended for you

Meta Tags