Abstract
The paper focuses on the presentation and comparison of basic nodal and expanded multi-nodal models of the Pressurized Water Reactor (PWR) core, which includes neutron kinetics, heat transfer between fuel and coolant, and internal and external reactivity feedback processes. In the expanded multi-nodal model, the authors introduce a novel approach to the implementation of thermal power distribution phenomena into the multi-node model of reactor core. This implementation has the form of thermal power distribution coefficients which approximate the thermal power generation profile in the reactor. It is assumed in the model that the thermal power distribution is proportional to the axial distribution of neutron flux in the un-rodded and rodded reactor core regions, as a result of control rod bank movements. In the paper, the authors propose a methodology to calculate those power distribution coefficients, which bases on numerical solutions of the transformed diffusion equations for the un-rodded and rodded reactor regions, respectively. Introducing power distribution coefficients into the expanded multi-nodal model allows to achieve advanced capabilities that can be efficiently used in design and synthesis of more advanced and complex control algorithms for PWR reactor core, for instance in the field of reactor temperature distribution control.
Citations
-
3 3
CrossRef
-
0
Web of Science
-
3 4
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
NUCLEAR ENGINEERING AND DESIGN
no. 322,
pages 444 - 463,
ISSN: 0029-5493 - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Puchalski B., Rutkowski T. A., Duzinkiewicz K.: Nodal models of Pressurized Water Reactor core for control purposes – A comparison study// NUCLEAR ENGINEERING AND DESIGN. -Vol. 322, (2017), s.444-463
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.nucengdes.2017.07.005
- Verified by:
- Gdańsk University of Technology
seen 342 times