Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH3NH3PbI3) solar cell - Publication - Bridge of Knowledge

Search

Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH3NH3PbI3) solar cell

Abstract

To improve the power conversion efficiency of solar cells based on organo–lead halide perovskites, a detailed understanding of the device physics is fundamental. Here, a computational analysis of excitons impact is reported for these types of photocell. Numerical calculations based on the model, which take into account electronic charge carriers (electrons and holes), excitons and ions, have been carried out. The role of excitons in two crystallographic phases associated with different temperatures (80 K and 295 K) have been studied with the Saha relation, which clearly distinguishes a domination of free charge carriers or excitons. We have confirmed that excitons prevail in the orthorombic phase. Our work provides information about the photophysics of the lead halide perovskite, which allows for a better understanding of the operation of devices based on perovskite materials.

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 55 times
Publication version
Accepted or Published Version
License
Copyright (2019 IOP Publishing Ltd)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SEMICONDUCTOR SCIENCE AND TECHNOLOGY no. 34, edition 3, pages 035018 - 035018,
ISSN: 0268-1242
Language:
English
Publication year:
2019
Bibliographic description:
Głowienka D., Szmytkowski J.: Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH3NH3PbI3) solar cell// SEMICONDUCTOR SCIENCE AND TECHNOLOGY. -Vol. 34, iss. 3 (2019), s.035018-035018
DOI:
Digital Object Identifier (open in new tab) 10.1088/1361-6641/aafeef
Bibliography: test
  1. Calculations were carried out at the Academic Computer Centre (CI TASK) in Gdańsk. References open in new tab
  2. Zhao D, Wang C, Song Z, Yu Y, Chen C, Zhao X, Zhu K and Yan Y 2018 ACS Energy Lett. 3 305-306 open in new tab
  3. Zhu X, Yang D, Yang R, Yang B, Yang Z, Ren X, Zhang J, Niu J, Feng J and Liu S F 2017 Nanoscale 9 12316-12323 open in new tab
  4. Yang W S, Park B W, Jung E H and Jeon N J 2017 Science 356 1376-1379 open in new tab
  5. Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584-1589 open in new tab
  6. Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2014 Science 342 341-344 open in new tab
  7. Park N G 2015 Mater. Today 18 65-72 open in new tab
  8. Green M A, Jiang Y, Soufiani A M and Ho-Baillie A 2015 J. Phys. Chem. Lett 6 4774-4785 open in new tab
  9. Yamada Y, Nakamura T, Endo M, Wakamiya A and Kanemitsu Y 2015 IEEE J. Photovolt. 5 401-405 open in new tab
  10. Lin Q, Armin A, Nagiri R C R, Burn P L and Meredith P 2015 Nat. Photonics 9 106-112 open in new tab
  11. Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J and Nicholas R J 2015 Nat. Phys. 11 582-587 open in new tab
  12. D'Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586 open in new tab
  13. Saba M, Quochi F, Mura A and Bongiovanni G 2016 Acc. Chem. Res. 49 166-173 open in new tab
  14. G lowienka D, Miruszewski T and Szmytkowski J 2018 Solid State Sci. 82 19 -23 open in new tab
  15. Milot R L, Eperon G E, Snaith H J, Johnston M B and Herz L M 2015 Adv. Funct. Mater. 25 6218-6227 open in new tab
  16. Onoda-Yamamuro N, Matsuo T and Suga H 1992 J. Phys. Chem. Solids 53 935-939 open in new tab
  17. Maynard B, Long Q, Schiff E A, Yang M, Zhu K, Kottokkaran R, Abbas H and Dalal V L 2016 Appl. Phys. Lett. 108 1-5 open in new tab
  18. Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019- 9038 open in new tab
  19. Kawamura Y, Mashiyama H and Hasebe K 2002 J. Phys. Soc. Jpn. 71 1694-1697 open in new tab
  20. Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Grätzel M and White T J 2013 J. Mater. Chem. A 1 5628-5641 open in new tab
  21. Wang H, Whittaker-Brooks L and Fleming G R 2015 J. Phys. Chem. C 119 19590-REFERENCES 21 open in new tab
  22. Hirasawa M, Ishihara T, Goto T, Uchida K and Miura N 1994 Physica B 201 427-430 open in new tab
  23. Miyazawa Y, Ikegami M, Chen H W, Ohshima T, Imaizumi M, Hirose K and Miyasaka T 2018 Science 2 148 -155 open in new tab
  24. Wang Z S, Sha W E I and Choy W C H 2016 J. Appl. Phys. 120 213101 open in new tab
  25. Hwang I and Greenham N C 2008 Nanotechnology 19 424012 open in new tab
  26. Barker J A, Ramsdale C M and Greenham N C 2003 Phys. Rev. B 67 075205 open in new tab
  27. G lowienka D and Szmytkowski J 2017 Acta Phys. Pol. A 132 397-400
  28. Calado P, Telford A M, Bryant D, Li X, Nelson J, O'Regan B C and Barnes P R F 2016 Nat. Commun. 7 13831 open in new tab
  29. Van Reenen S, Kemerink M and Snaith H J 2015 J. Phys. Chem. Lett 6 3808-3814 open in new tab
  30. Ren X, Wang Z, Sha W E I and Choy W C H 2017 ACS Photonics 4 934-942 open in new tab
  31. Richardson G, O'Kane S, Niemann R G, Peltola T, Foster J M, Cameron P J and Walker A 2016 Energy Environ. Sci. 9 1476-1485 open in new tab
  32. Sherkar T S, Momblona C, Gil-Escrig L, Bolink H J and Koster L J A 2017 Adv. Energy Mater. 7 1602432 open in new tab
  33. Zhou Y and Gray-Weale A 2015 Phys. Chem. Chem. Phys. 18 4476-4486 open in new tab
  34. Walter D, Fell A, Wu Y, Duong T, Barugkin C, Wu N, White T and Weber K 2018 J. Phys. Chem. C 122 11270-11281 open in new tab
  35. Piermarocchi C, Tassone F, Savona V, Quattropani A and Schwendimann P 1997 Phys. Rev. B 55 1333-1336 open in new tab
  36. Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A and Snaith H J 2014 Phys. Rev. Applied 2(3) 034007 open in new tab
  37. Selberherr S 1984 Analysis and Simulation of Semiconductor Devices (Springer- Verlag Wien) open in new tab
  38. Simmons J G and Taylor G W 1971 Phys. Rev. B 4 502-511 open in new tab
  39. Langevin P 1903 Ann. Chim. Phys. 28 433 open in new tab
  40. Beattie A R and Landsberg P T 1959 Proc. Royal Soc. A 249 16-29 open in new tab
  41. Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Devices 16 64-77 open in new tab
  42. Roghabadi F A, Aghmiuni K O and Ahmadi V 2016 Org. Electron. 34 164 -171
  43. Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Adv. Mater. 26 6503-6509 open in new tab
  44. Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry- Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591 open in new tab
  45. Pettersson L A A, Roman L S and Inganäs O 1999 J. Appl. Phys. 86 487-496 open in new tab
  46. Burkhard G F, Hoke E T and McGehee M D 2010 Adv. Mater. 22 3293-3297 open in new tab
  47. Saha M N 1921 Proc. Royal Soc. A 99 135 open in new tab
  48. Valverde-Chávez D A, Ponseca C, Stoumpos C, Yartsev A, Kanatzidis M G, Sundström V and Cooke D G 2015 Energy Environ. Sci. 8 3700-3707 open in new tab
  49. G lowienka D and Szmytkowski J 2018 Chem. Phys. 503 31-38
  50. Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A and Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566-4572 REFERENCES 22 open in new tab
  51. Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Grätzel M and Wang M 2015 J. Mater. Chem. A 3(22) 11762-11767 open in new tab
  52. Selbmann P E, Gulia M, Rossi F, Molinari E and Lugli P 1996 Phys. Rev. B 54(7) 4660-4673 open in new tab
  53. Kira M, Hoyer W, Stroucken T and Koch S W 2001 Phys. Rev. Lett. 87(17) 176401 open in new tab
  54. Janković V and Vukmirović N 2015 Phys. Rev. B 92(23) 235208 open in new tab
  55. Shao S, Liu J, Fang H H, Qiu L, ten Brink G H, Hummelen J C, Koster L J A and Loi M A 2017 Adv. Energy Mater. 7 1701305 open in new tab
Verified by:
Gdańsk University of Technology

seen 128 times

Recommended for you

Meta Tags