On the effective properties of foams in the framework of the couple stress theory - Publication - Bridge of Knowledge

Search

On the effective properties of foams in the framework of the couple stress theory

Abstract

In the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.

Citations

  • 2 3

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Cite as

Full text

download paper
downloaded 24 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CONTINUUM MECHANICS AND THERMODYNAMICS no. 32, pages 1779 - 1801,
ISSN: 0935-1175
Language:
English
Publication year:
2020
Bibliographic description:
Skrzat A., Eremeev V.: On the effective properties of foams in the framework of the couple stress theory// CONTINUUM MECHANICS AND THERMODYNAMICS -Vol. 32, (2020), s.1779-1801
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00161-020-00880-6
Bibliography: test
  1. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Boston (2000) open in new tab
  2. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge Solid State Science Series, 2nd edn. Cam- bridge University Press, Cambridge (1997) open in new tab
  3. Banhart, J.: Manufacturing routes for metallic foams. J. Miner. 52(12), 22-27 (2000) open in new tab
  4. Banhart, J., Ashby, M.F., Fleck, N.A. (eds.): Metal Foams and Porous Metal Structures. Verlag MIT Publishing, Bremen (1999)
  5. Altenbach, H., Öchsner, A. (eds.): Cellular and Porous Materials in Structures and Processes. CISM Courses and Lectures, vol. 521. Springer, Wien (2011) open in new tab
  6. Lakes, R.S.: Foam structures with a negative Poisson's ratio. Science 235, 1038-1040 (1987) open in new tab
  7. Lim, T.-C.: Auxetic Materials and Structures, Engineering Materials. Springer, Singapore (2015) open in new tab
  8. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22(1), 55-63 (1986) open in new tab
  9. Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open-cell polymer foam. Philos. Mag. 96(2), 93-111 (2016) open in new tab
  10. Rueger, Z., Lakes, R.S.: Cosserat elasticity of negative Poisson's ratio foam: experiment. Smart Mater. Struct. 25(5), 054004 (2016) open in new tab
  11. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120(6), 065501 (2018) open in new tab
  12. Rueger, Z., Lakes, R.S.: Experimental study of elastic constants of a dense foam with weak Cosserat coupling. J. Elast. 137, 101-115 (2019) open in new tab
  13. Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54, 1983-1999 (2019). https://doi.org/10.1007/s11012- 019-00968-7 open in new tab
  14. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977)
  15. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004) open in new tab
  16. Diebels, S., Steeb, H.: Stress and couple stress in foams. Comput. Mater. Sci. 28(3-4), 714-722 (2003) open in new tab
  17. Ehlers, W., Ramm, E., Diebels, S., d'Addetta, G.D.A.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40(24), 6681-6702 (2003) open in new tab
  18. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell'Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148-172 (2015) open in new tab
  19. Boutin, C., dell'Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127-162 (2017) open in new tab
  20. Turco, E., dell'Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical com- parison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 85 (2016) open in new tab
  21. dell'Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A 472(2185), 20150790 (2016) open in new tab
  22. dell'Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Contin. Mech. Thermodyn. 31, 1231-1282 (2019) open in new tab
  23. Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6(3), 213-250 (2018) open in new tab
  24. Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33-52 (2018) open in new tab
  25. Eremeyev, V.A.: Two-and three-dimensional elastic networks with rigid junctions: modelling within the theory of micropolar shells and solids. Acta Mech. 230(11), 3875-3887 (2019). https://doi.org/10.1007/s00707-019-02527-3 open in new tab
  26. Rahali, Y., Ganghoffer, J.-F., Chaouachi, F., Zghal, A.: Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries. J. Geom. Symmetry Phys. 40, 35-52 (2015) open in new tab
  27. Rahali, Y., Dos Reis, F., Ganghoffer, J.-F.: Multiscale homogenization schemes for the construction of second-order grade anisotropic continuum media of architectured materials. Int. J. Multiscale Comput. Eng. 15(1), 1-44 (2017) open in new tab
  28. Rahali, Y., Eremeyev, V.A., Ganghoffer, J.-F.: Surface effects of network materials based on strain gradient homogenized media. Math. Mech. Solids 25(2), 389-406 (2020). https://doi.org/10.1177/1081286519877684 open in new tab
  29. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986) open in new tab
  30. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999) open in new tab
  31. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385-414 (1962) open in new tab
  32. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51-78 (1964) open in new tab
  33. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109-124 (1968) open in new tab
  34. dell'Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke's law for isotropic second gradient materials. R. Soc. Lond. Proc. Ser. A 465(2107), 2177-2196 (2009) open in new tab
  35. Auffray, N., Le Quang, H., He, Q.-C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202-1223 (2013) open in new tab
  36. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69, 195-206 (2015) open in new tab
  37. Auffray, N., Kolev, B., Olive, M.: Handbook of bi-dimensional tensors: part I: harmonic decomposition and symmetry classes. Math. Mech. Solids 22(9), 1847-1865 (2017) open in new tab
  38. Bertram, A.: Compendium on Gradient Materials Including Solids and Fluids, 4th edn. TU Berlin, Berlin (2019)
  39. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731-2743 (2002) open in new tab
  40. Goda, I., Rahouadj, R., Ganghoffer, J.-F., Kerdjoudj, H., Siad, L.: 3D couple-stress moduli of porous polymeric biomaterials using μCT image stack and FE characterization. Int. J. Eng. Sci. 100, 25-44 (2016) open in new tab
  41. Veyhl, C., Belova, I.V., Murch, G.E., Öchsner, A., Fiedler, T.: Thermal analysis of aluminium foam based on micro-computed tomography. Materialwiss. Werkstofftech. 42(5), 350-355 (2011) open in new tab
  42. Vesenjak, M., Krstulović-Opara, L., Ren, Z., Öchsner, A., Domazet, Ž.: Experimental study of open-cell cellular structures with elastic filler material. Exp. Mech. 49(4), 501 (2009) open in new tab
  43. Hossein Hosseini, S.M., Öchsner, A., Fiedler, T.: Numerical prediction of the effective thermal conductivity of open-and closed-cell foam structures. In: Defect and Diffusion Forum, vol. 297, pp. 1210-1217. Trans Tech Publishing (2010)
  44. Fiedler, T., Öchsner, A., Gracio, J., Kuhn, G.: Structural modeling of the mechanical behavior of periodic cellular solids: open-cell structures. Mech. Compos. Mater. 41(3), 277-290 (2005) open in new tab
  45. Pȩcherski, R .B., Nowak, M., Nowak, Z.: Virtual metallic foams. Application for dynamic crushing analysis. Int. J. Multiscale Comput. Eng. 15(5), 431-442 (2017) open in new tab
  46. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15(2), 79-95 (1967) open in new tab
  47. Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, Hoboken (2006) open in new tab
  48. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993-2005 (2012) open in new tab
  49. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210-221 (2016) open in new tab
  50. Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55(11), 2328-2350 (2007) open in new tab
  51. Eremeyev, V.A., Ganghoffer, J.-F., Konopińska-Zmysłowska, V., Uglov, N.S.: Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 149, 103213 (2020) open in new tab
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags