Photocatalytic Decomposition of Air Pollutants using Electrodeposited Photocatalysts on Stainless Steel - Publication - Bridge of Knowledge

Search

Photocatalytic Decomposition of Air Pollutants using Electrodeposited Photocatalysts on Stainless Steel

Abstract

The aim of research was to develop an immobilization method for photocatalysts, which is an alternative to the sol-gel or dip coating methods and can be simply scaled up for technical applications. The investigated photocatalyst was TiO2, which was electrochemically deposited onto a cathode made of stainless steel. This deposited film was photocatalytically active. In order to enhance the photoactivity of the TiO2 film, commercially available P25 photocatalyst nanoparticles were occluded into the film. The effect of deposition current density as well as the amount of occluded nanoparticles on the photocatalytic activity and photoelectrochemical behavior was investigated. The photocatalytic activity was evaluated in an UV-LED reactor. The decomposition rate of toluene and cyclohexane in air was examined for all prepared stainless steel-photocatalyst composites. It was observed that deposits prepared with 5 g dm-3 of P25 in the deposition bath showed the best photocatalytic activity and highest photocurrent.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 21 times
Publication version
Accepted or Published Version
License
Copyright (Polish Journal of Environmental Studies 2019)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
POLISH JOURNAL OF ENVIRONMENTAL STUDIES no. 28, pages 1157 - 1164,
ISSN: 1230-1485
Language:
English
Publication year:
2019
Bibliographic description:
Haenel A., Janczarek M., Lieder M., Hupka J.: Photocatalytic Decomposition of Air Pollutants using Electrodeposited Photocatalysts on Stainless Steel// POLISH JOURNAL OF ENVIRONMENTAL STUDIES. -Vol. 28, nr. 3 (2019), s.1157-1164
DOI:
Digital Object Identifier (open in new tab) 10.15244/pjoes/81558
Bibliography: test
  1. TARANTO J., FROCHOT D., PICHAT P. Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO 2 -coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m 3 close-loop reactor. Sep. Purif. Technol., 67 (2), 187, 2009. open in new tab
  2. HÄNEL A., MOREŃ P., ZALESKA A., HUPKA J. Photocatalytic activity of TiO 2 immobilized on glass beads. Physicochem. Probl. Miner. Process., 45, 49, 2010.
  3. ZALESKA A., HÄNEL A., NISCHK M. Photocatalytic air purification. Recent Paten. Eng., 4 (3), 200, 2010. open in new tab
  4. ZMUDZIŃSKI W. Removal of o-Cresol from Water by Adsorption/Photocatalysis. Pol. J. Environ. Stud., 19 (6), 1353, 2010.
  5. POZZO R.L., BALTANAS M.A., and CASSANO A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 39 (3), 219, 1997. open in new tab
  6. ZHANG Y., XIONG X., HAN Y., ZHANG X., SHEN F., DENG S., XIAO H., YANG X., YANG G., and PENG H. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO 2 film electrodes: An overview. Chemosphere, 88 (2), 145, 2012. open in new tab
  7. LEE W., PARK S.-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. (Washington, DC, U. S.), 114 (15), 7487, 2014.
  8. ZWILLING V., AUCOUTURIER M., DARQUE- CERETTI E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta, 45 (6), 921, 1999. open in new tab
  9. JUN Y., PARK J.H., KANG M.G. The preparation of highly ordered TiO 2 nanotube arrays by an anodization method and their applications. Chem. Commun., 48 (52), 6456, 2012. open in new tab
  10. RANI S., ROY S.C., PAULOSE M., VARGHESE O.K., MOR G.K., KIM S., YORIYA S., LATEMPA T.J., GRIMES C. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys., 12 (12), 2780, 2010.
  11. FENG Z.-S., CHEN J.-J., ZHANG C., ZHAO N., LIANG Z. Formation of Al 2 O 3 -TiO 2 composite oxide films on aluminum foil by cathodic electrodeposition and anodizing. Ceram. Int., 38 (3), 2501, 2012.
  12. ERTEKIN Z., TAMER U., PEKMEZ K. Cathodic electrochemical deposition of Magnéli phases Ti n O 2n-1 thin Sample (-) open in new tab
  13. films at different temperatures in acetonitrile solution. Electrochim. Acta, 163, 77, 2015. open in new tab
  14. KAVAN L. Nanomaterials based on carbon and Ti (IV) oxides: Some aspects of their electrochemistry. Int. J. Nanotech., 9 (8-9), 652, 2012. open in new tab
  15. CHIGANE M., SHINAGAWA T. Preparation of Thick Titanium Dioxide Films by Repeated Electrolysis- Calcination for Dye-Sensitized Solar Cells. J. Electrochem. Soc., 161 (3), E40, 2014. open in new tab
  16. WESSELS K., WARK M., OEKERMANN T. Efficiency improvement of dye-sensitized solar cells based on electrodeposited TiO 2 films by low temperature post- treatment. Electrochim. Acta, 55 (22), 6352, 2010. open in new tab
  17. LIU L., MANDLER D., Sol-Gel Coatings by Electrochemical Deposition, in The Sol-Gel Handbook: Synthesis, Characterization and Applications; Levy D. and Zayat M., Eds., John Wiley & Sons: Weinheim, Volume 2, pp. 373, 2015.
  18. PIFFERI V., SPADAVECCHIA F., CAPPELLETTI G., PAOLI E.A., BIANCHI C.L., FALCIOLA L. Electrodeposited nano-titania films for photocatalytic Cr(VI) reduction. Catal. Today, 209, 8, 2013. open in new tab
  19. CHENTHAMARAKSHAN C.R., DE TACCONI N.R., RAJESHWAR K., SHIRATSUCHI R. Immobilizing semiconductor particles by occlusion electrosynthesis in an oxide film matrix: The titania model case. Electrochem. Commun., 4 (11), 871, 2002. open in new tab
  20. GEORGIEVA J. TiO 2 /WO 3 photoanodes with enhanced photocatalytic activity for air treatment in a polymer electrolyte cell. J. Solid State Electrochem., 16 (3), 1111, 2011. open in new tab
  21. GEORGIEVA J., SOTIROPOULOS S., ARMYANOV S., PHILIPPIDIS N., POULIOS I. Photoelectrocatalytic activity of bi-layer TiO 2 /WO 3 coatings for the degradation of 4-chlorophenol: effect of morphology and catalyst loading. J. Appl. Electrochem., 41 (2), 173, 2011. open in new tab
  22. ISHIZAKI H., ITO S. Electrochemical Fabrication of Titanium Oxide Film from an Aqueous Solution Containing Titanium Ion and Hydroxylamine. ECS Trans., 41 (4), 111, 2011. open in new tab
  23. SAYAHI H., MOHSENZADEH F., HAMADANIAN M. Cost-effective fabrication of perdurable electrodeposited TiO 2 nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue. Res. Chem. Intermed., 1, 2017. open in new tab
  24. TRUONG Q.D., DIEN L.X., VO D.-V.N., LE T.S. Controlled synthesis of titania using water-soluble titanium complexes: A review. J. Solid State Chem., 251, 143, 2017. open in new tab
  25. KAKIHANA M., KOBAYASHI M., TOMITA K., PETRYKIN V. Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium- Containing Oxides via Aqueous Solution Processes. Bull. Chem. Soc. Jpn., 83 (11), 1285, 2010. open in new tab
  26. ZHITOMIRSKY I., GAL-OR L., KOHN A., HENNICKE H.W. Electrodeposition of ceramic films from non-aqueous and mixed solutions. J. Mater. Sci., 30 (20), 5307, 1995. open in new tab
  27. MÜHLEBACH J., MÜLLER K., SCHWARZENBACH G. Peroxo complexes of titanium. Inorg. Chem., 9, 2381, 1970. 27. BARD A.J., FAULKNER L.R. Electrochemical Methods -Fundamentals and Applications, 2 nd ed;
  28. THERESE G.H.A., KAMATH P.V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater., 12 (5), 1195, 2000.
  29. HÄNEL A. Evaluation of cathode materials for the electrochemical photocatalyst deposition. PhD Interdiscipl. J., 1, 175, 2015. open in new tab
  30. NISCHK M., MAZIERSKI P., GAZDA M., ZALESKA A. Ordered TiO 2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process. Appl. Catal., B, 144, 674, 2014. open in new tab
  31. MIODUSKA J., ZIELIŃSKA-JUREK A., HUPKA J. Photocatalytical degradation of toluene and cyclohexane using LED illumination. Pol. J. Environ. Stud., 26 (3), 1159, 2017. open in new tab
  32. HAN C., PELAEZ M., LIKODIMOS V., KONTOS A.G., FALARAS P., O'SHEA K., DIONYSIOU D.D. Innovative visible light-activated sulfur doped TiO 2 films for water treatment. Appl. Catal., B, 107 (1-2), 77, 2011. open in new tab
  33. ARMAN S.Y., OMIDVAR H., TABAIAN S.H., SAJJADNEJAD M., FOULADVAND S., AFSHAR S. Evaluation of nanostructured S-doped TiO 2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surf. Coat. Technol., 251 (25), 162, 2014. open in new tab
  34. BARR T.L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem., 82 (16), 1801, 1978. open in new tab
  35. YU Q.L. BROUWERS H.J.H. Indoor air purification using heterogeneous photocatalytic oxidation part I: Experimental study. Appl. Catal., B, 92, 454, 2009.
  36. WANG Y., HUANG Y., HO W., ZHANG L., ZOU Z., LEE S. Biomolecule-controlled hydrothermal synthesis of CNS-tridoped TiO 2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J. Hazard. Mater., 169 (1-3), 77, 2009.
  37. GEORGIEVA J., ARMYANOV S., VALOVA E., POULIOS I., SOTIROPOULOS S. Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates. Electrochim. Acta, 51 (10), 2076, 2006. open in new tab
  38. DROGOWSKA M., MÈNARD H., BROSSARD L. Electrooxidation of Stainless Steel AISI 304 in Carbonate Aqueous Solution at pH 8. J. Appl. Electrochem., 26 (2), 217, 1996. open in new tab
  39. YANG Z., CHOI D., KERISIT S., ROSSO K.M., WANG D., ZHANG J., GRAFF G., LIU J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources, 192 (2), 588, 2009.
  40. YANG L., LIU Z., SHI J., HU H., SHANGGUAN W. Design consideration of photocatalytic oxidation reactors using eTiO 2 -coated foam nickels for degrading indoor gaseous formaldehyde. Catal. Today, 126 (3-4), 359, 2007.
Sources of funding:
  • PG 020538 NCN 2011/03/N/ST5/04394
Verified by:
Gdańsk University of Technology

seen 138 times

Recommended for you

Meta Tags