Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions - Publication - Bridge of Knowledge

Search

Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions

Abstract

In this study, biodegradable and compostable compositions, derived from totally natural feedstock/raw materials, namely polylactide (PLA), potato thermoplastic starch (TPS) and plant glycerin have been made by melt extrusion with epoxydized soybean oil (ESO) as reactive modifier in order to improve PLAs ductility and reduce the products cost without compromising biodegradation. The obtained PLA/mTPS(0,5ESO)[75/25] and PLA/ mTPS(2ESO)[75/25] compositions provides satisfactory mechanical properties comparable to native PLA. Addition of 25% TPS and 0,5-2% ESO to PLA, improved impact strength from 13,70 kJ/m2 to 16,69 kJ/m2 compared to neat PLA and increase elongation at break from 2,6% to 8,8%. The addition of ESO into PLA/TPS composition enhanced water resistance and improved impact strength to over 16 kJ/m2 for PLA/TPS(2%ESO)[75/25] composition. The thermal, rheological and morphology of fractured surface were also studied. Finally, biodegradability and compostability of prepared samples was specified by stimulated composting process (according to PN-EN 14806:2010 standard). Possibility of replacing up to 25% of PLA by TPS and ESO, allows to reduces the costs of the product as well as maintain quite similar properties and ability to composting relative to native PLA.

Citations

  • 4 8

    CrossRef

  • 0

    Web of Science

  • 5 0

    Scopus

Cite as

Full text

download paper
downloaded 473 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
INDUSTRIAL CROPS AND PRODUCTS no. 122, edition 15, pages 375 - 383,
ISSN: 0926-6690
Language:
English
Publication year:
2018
Bibliographic description:
Przybytek A., Sienkiewicz M., Kucińska-Lipka J., Janik H.: Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions// INDUSTRIAL CROPS AND PRODUCTS. -Vol. 122, iss. 15 (2018), s.375-383
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.indcrop.2018.06.016
Bibliography: test
  1. Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., Seyedabadi, M., 2016. A new approach in https://doi.org/10.1016/j.indcrop.2013.12.039 open in new tab
  2. Carmona, V.B., Corrêa, A.C., Marconcini, J.M., Mattoso, L.H.C., 2015. Properties of a Biodegradable 390 open in new tab
  3. Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) 391 (PLA). J. Polym. Environ. 23, 83-89. https://doi.org/10.1007/s10924-014-0666-7 open in new tab
  4. Cartier, L., Okihara, T., Ikada, Y., Tsuji, H., Puiggali, J., Lotz, B., 2000. Epitaxial crystallization and 393 crystalline polymorphism of polylactides. Polymer (Guildf). 41, 8909-8919. open in new tab
  5. https://doi.org/10.1016/0032-3861(94)90933-4 open in new tab
  6. Clasen, S.H., Müller, C.M.O., Pires, A.T.N., 2015. Maleic Anhydride as a Compatibilizer and 396 open in new tab
  7. Plasticizer in TPS/PLA Blends. J. Braz. Chem. Soc. https://doi.org/10.5935/0103-5053.20150126 open in new tab
  8. Ferri, J.M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., Balart, R., 2016. The effect of 398 maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch 399 (PLA-TPS) blends. Carbohydr. Polym. 147, 60-68. https://doi.org/10.1016/j.carbpol.2016.03.082 open in new tab
  9. Gregory, M.R., 2009. Environmental implications of plastic debris in marine settings--entanglement, 401 open in new tab
  10. ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. Lond. open in new tab
  11. B. Biol. Sci. 364, 2013-2025. https://doi.org/10.1098/rstb.2008.0265 open in new tab
  12. Guarás, M.P., Alvarez, V.A., Ludueña, L.N., 2016. Biodegradable nanocomposites based on 404 starch/polycaprolactone/compatibilizer ternary blends reinforced with natural and organo- 405 modified montmorillonite. J. Appl. Polym. Sci. 133. https://doi.org/10.1002/app.44163 open in new tab
  13. Huneault, M.A., Li, H., 2007. Morphology and properties of compatibilized polylactide/thermoplastic 407 starch blends. Polymer (Guildf). 48, 270-280. https://doi.org/10.1016/j.polymer.2006.11.023 open in new tab
  14. Müller, C.M.O., Pires, A.T.N., Yamashita, F., 2012. Characterization of thermoplastic starch/poly(lactic 454 acid) blends obtained by extrusion and thermopressing. J. Braz. Chem. Soc. 23, 426-434. open in new tab
  15. https://doi.org/10.1590/S0103-50532012000300008 open in new tab
  16. Nafchi, A.M., Moradpour, M., Saeidi, M., Alias, A.K., 2013. Thermoplastic starches: Properties, 457 challenges, and prospects. Starch/Staerke 65, 61-72. https://doi.org/10.1002/star.201200201 open in new tab
  17. Parulekar, Y., Mohanty, A.K., 2007. Extruded Biodegradable Cast Films from Polyhydroxyalkanoate 459 and Thermoplastic Starch Blends: Fabrication and Characterization. Macromol. Mater. Eng. 292, 460 1218-1228. https://doi.org/10.1002/mame.200700125 open in new tab
  18. PlasticsEurope, 2016. Plastics -the Facts 2016. An analysis of European plastics production, demand 462 and waste data. open in new tab
  19. Shen, L., Haufe, J., Patel, M.K., 2009. Product overview and market projection of emerging bio-based 464 plastics. open in new tab
  20. Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D., 2008. Biodegradable polymers for food packaging: 466 a review. Trends Food Sci. Technol. 19, 634-643. https://doi.org/10.1016/j.tifs.2008.07.003 open in new tab
  21. Tábi, T., Sajó, I.E., Szabó, F., Luyt, A.S., Kovács, J.G., 2010. Crystalline structure of annealed 468 polylactic acid and its relation to processing. Express Polym. Lett. 4, 659-668.
  22. https://doi.org/10.3144/expresspolymlett.2010.80 open in new tab
  23. Teixeira, E. de M., Curvelo, A.A.S., Corrêa, A.C., Marconcini, J.M., Glenn, G.M., Mattoso, L.H.C., methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 82, 1761-1767.
  24. https://doi.org/10.1016/j.carbpol.2007.05.025 -Characterization and Biodegradability Assessment. Macromol. Biosci. 5, 352-361. open in new tab
  25. https://doi.org/10.1002/mabi.200400159 open in new tab
  26. Xing, C., Matuana, L.M., 2016. Epoxidized soybean oil-plasticized poly(lactic acid) films performance 491 as impacted by storage. J. Appl. Polym. Sci. 133, 1-8. https://doi.org/10.1002/app.43201 open in new tab
  27. Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., Zhu, J., 2013. Preparation and https://doi.org/10.1016/j.ijbiomac.2015.03.053 open in new tab
  28. Yu-Qiong Xu, J.-P.Q., 2009. Mechanical and Rheological Properties of Epoxidized Soybean Oil Compatibilized by Maleic Anhydride. Biomacromolecules 5, 1446-1451.
  29. Review. Crit. Rev. Food Sci. Nutr. 54, 1353-1370. open in new tab
Verified by:
Gdańsk University of Technology

seen 190 times

Recommended for you

Meta Tags