Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes - Publication - Bridge of Knowledge

Search

Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes

Abstract

Lignocellulosic biomass is an abundant and renewable resource that potentially contains large amounts of energy. It is an interesting alternative for fossil fuels, allowing the production of biofuels and other organic compounds. In this paper, a review devoted to the processing of lignocellulosic materials as substrates for fermentation processes is presented. The review focuses on physical, chemical, physicochemical, enzymatic, and microbiologic methods of biomass pretreatment. In addition to the evaluation of the mentioned methods, the aim of the paper is to understand the possibilities of the biomass pretreatment and their influence on the efficiency of biofuels and organic compounds production. The effects of different pretreatment methods on the lignocellulosic biomass structure are described along with a discussion of the benefits and drawbacks of each method, including the potential generation of inhibitory compounds for enzymatic hydrolysis, the effect on cellulose digestibility, the generation of compounds that are toxic for the environment, and energy and economic demand. The results of the investigations imply that only the stepwise pretreatment procedure may ensure effective fermentation of the lignocellulosic biomass. Pretreatment step is still a challenge for obtaining cost-effective and competitive technology for large-scale conversion of lignocellulosic biomass into fermentable sugars with low inhibitory concentration.

Citations

  • 3 4 8

    CrossRef

  • 0

    Web of Science

  • 3 5 4

    Scopus

Cite as

Full text

download paper
downloaded 312 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MOLECULES no. 23, pages 1 - 32,
ISSN: 1420-3049
Language:
English
Publication year:
2018
Bibliographic description:
Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M.: Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes// MOLECULES. -Vol. 23, nr. 2937 (2018), s.1-32
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules23112937
Bibliography: test
  1. Waligórska, M.; Łaniecki, M. Fotobiologiczna produkcja wodoru z mieszaniny alkoholi i lotnych kwasów tłuszczowych. Inż. Ap. Chem. 2009, 48, 121-122.
  2. Grabarczyk, J.; Paukszta, D.; Borysiak, S. Kompozyty polimerów termoplastycznych z materiałami lignocelulozowymi. Tech. Trans. 2009, 106, 93-97.
  3. Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713-3729. [CrossRef] open in new tab
  4. Wang, J.; Wan, W. Influence of Ni2 + concentration on biohydrogen production. Bioresour. Technol. 2008, 99, 8864-8868. [CrossRef] [PubMed] open in new tab
  5. Azbar, N.; Çetinkaya Dokgöz, F.T.; Keskin, T.; Korkmaz, K.S.; Syed, H.M. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrogen Energy 2009, 34, 7441-7447. [CrossRef] open in new tab
  6. Urbaniec, K.; Grabarczyk, R. Raw materials for fermentative hydrogen production. J. Clean. Prod. 2009, 17, 959-962. [CrossRef] open in new tab
  7. Geng, A.; He, Y.; Qian, C.; Yan, X.; Zhou, Z. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour. Technol. 2010, 101, 4029-4033. [CrossRef] [PubMed] open in new tab
  8. Gómez, X.; Fernández, C.; Fierro, J.; Sánchez, M.E.; Escapa, A.; Morán, A. Hydrogen production: Two stage processes for waste degradation. Bioresour. Technol. 2011, 102, 8621-8627. [CrossRef] [PubMed] open in new tab
  9. Kothari, R.; Singh, D.P.; Tyagi, V.V.; Tyagi, S.K. Fermentative hydrogen production-An alternative clean energy source. Renew. Sustain. Energy Rev. 2012, 16, 2337-2346. [CrossRef] open in new tab
  10. Wulf, C.; Kaltschmitt, M. Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour. Technol. 2013, 150, 466-475. [CrossRef] [PubMed] open in new tab
  11. Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech 2015, 5, 337-353. [CrossRef] [PubMed] open in new tab
  12. Khramtsov, N.; McDade, L.; Amerik, A.; Yu, E.; Divatia, K.; Tikhonov, A.; Minto, M.; Kabongo-Mubalamate, G.; Markovic, Z.; Ruiz-Martinez, M.; et al. Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresour. Technol. 2011, 102, 8310-8313. [CrossRef] [PubMed] open in new tab
  13. Salehian, P.; Karimi, K. Alkali Pretreatment for Improvement of Biogas and Ethanol Production from Different Waste Parts of Pine Tree. Ind. Eng. Chem. Res. 2013, 52, 972-978. [CrossRef] open in new tab
  14. Sárvári Horváth, I.; Tabatabaei, M.; Karimi, K.; Kumar, R. Recent updates on biogas production-A review. Biofuel Res. J. 2016, 3, 394-402. [CrossRef] open in new tab
  15. Teghammar, A.; Karimi, K.; Sárvári Horváth, I.; Taherzadeh, M.J. Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 2012, 36, 116-120. [CrossRef] open in new tab
  16. Hannula, I. Synthetic Fuels and Light Olefins from Biomass Residues, Carbon Dioxide and Electricity. Performance and Cost Analysis; Teknologian tutkimuskeskus VTT Oy: Otaniemi, Finland, 2015; pp. 3-105. open in new tab
  17. Colby, J.L.; Dauenhauer, P.J.; Schmidt, L.D. Millisecond autothermal steam reforming of cellulose for synthetic biofuels by reactive flash volatilization. Green Chem. 2008, 10, 773-783. [CrossRef] open in new tab
  18. Meijden, C.M.; Vreugdenhil, B.J.; Rabou, L.P.L.; Almansa, G.A. Production of bio-methane from woody biomass. In Bio-Methane World Gas Conference; Energy Research Centre of the Nederlands: Buenos Aires, Argentina, 2009; p. 8.
  19. Liew, L.N.; Shi, J.; Li, Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 2012, 46, 125-132. [CrossRef] open in new tab
  20. Chandra, R.; Takeuchi, H.; Hasegawa, T. Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Appl. Energy 2012, 94, 129-140. [CrossRef] open in new tab
  21. Hoekman, S.K. Biofuels in the US-Challenges and Opportunities. Renew. Energy 2009, 34, 14-22. [CrossRef] open in new tab
  22. Bohutskyi, P.; Kula, T.; Kessler, B.A.; Hong, Y.; Bouwer, E.J.; Betenbaugh, M.J.; Allnutt, F.C.T. Mixed Trophic State Production Process for Microalgal Biomass with High Lipid Content for Generating Biodiesel and Biogas. Bioenergy Res. 2014, 7, 1174-1185. [CrossRef] open in new tab
  23. Argun, H.; Kargi, F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. Int. J. Hydrogen Energy 2011, 36, 7443-7459. [CrossRef] open in new tab
  24. Moreno, J.; Dufour, J. Life cycle assessment of hydrogen production from biomass gasification. Evaluation of different Spanish feedstocks. Int. J. Hydrogen Energy 2013, 38, 7616-7622. [CrossRef] open in new tab
  25. Atif, A.A.Y.; Fakhru'l-Razi, A.; Ngan, M.A.; Morimoto, M.; Iyuke, S.E.; Veziroglu, N.T. Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int. J. Hydrogen Energy 2005, 30, 1393-1397. [CrossRef] open in new tab
  26. Klimiuk, E.; Pawłowska, M.; Pokój, T. Biopaliwa. Technologie dla Zrównoważonego Rozwoju; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012.
  27. Tani, H.; Umemura, Y.; Daimon, Y. Interface Tracking Simulations of Liquid Oxygen/Gaseous Hydrogen Coaxial Combustions at Subcritical Pressures. In 55th AIAA Aerospace Sciences Meeting; AIAA SciTech Forum: Grapevine, TX, USA, 2017; p. 0144. open in new tab
  28. Fiala, T.; Sattelmayer, T. Modeling of the continuous (blue) radiation in hydrogen flames. Int. J. Hydrogen Energy 2016, 41, 1293-1303. [CrossRef] open in new tab
  29. Spencer Dale. Energy in 2015: A year of plenty. In BP Statistical Review of World Energy; British Petroleum Company: London, UK, 2016; Available online: https://www.google.com/url?sa= t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=2ahUKEwjN45L-lsjeAhWIxIsKHZ- yDrQQFjADegQIABAC&url=https%3A%2F%2Fwww.bp.com%2Fcontent%2Fdam%2Fbp%2Fpdf% 2Fenergy-economics%2Fstatistical-review-2016%2Fbp-statistical-review-of-world-energy-2016-spencer- dale-presentation.pdf&usg=AOvVaw0ddjJlGMyG-g2YS11CVcOR (accessed on 7 November 2018). open in new tab
  30. International Energy Agency. Key world energy statistics 2018; International Energy Agency: Paris, France, 2018; Available online: https://webstore.iea.org/key-world-energy-statistics-2018 (accessed on 7 November 2018). open in new tab
  31. Green Power Lacks the Energy Density to Run Our Civilization, LENR Might Provide It. LENR & Cold Fusion News, N.p. 24 July 2014. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s& source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwidp-6dmcjeAhXKposKHe6nDSwQFjAAegQIChAB& url=http%3A%2F%2Fcoldfusion3.com%2Fblog%2Fgreen-power-lacks-the-energy-density-to-run-our- civilization-lenr-might-provide-it&usg=AOvVaw03Ftvlpt7MAIQpEv7PIwa4 (accessed on 7 November 2015). open in new tab
  32. Goryunov, A.G.; Goryunova, N.N.; Ogunlana, A.O.; Manenti, F. Production of energy from biomass: Near or distant future prospects? Chem. Eng. Trans. 2016, 52, 1219-1224. open in new tab
  33. Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858-875. [CrossRef] open in new tab
  34. Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1-11. [CrossRef] open in new tab
  35. Lalak, J.; Kasprzycka, A.; Murat, A.; Paprota, E.M.; Tys, J. Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej (praca przeglądowa). Acta Agrophys. 2014, 21, 51-62.
  36. Simon, P. Renewable Energy Medium-Term Market Report 2015. Market Analysis and Forecasts to 2020-Executive Summary 2015; International Energy Agency: Paris, France, 2015. open in new tab
  37. Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10-18. [CrossRef] [PubMed] open in new tab
  38. Argun, H.; Kargi, F.; Kapdan, I.K.; Oztekin, R. Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. Int. J. Hydrogen Energy 2008, 33, 1813-1819. [CrossRef] open in new tab
  39. Łukajtis, R.; Kucharska, K.; Hołowacz, I.; Rybarczyk, P.; Wychodnik, K.; Słupek, E.; Nowak, P.; Kamiński, M. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. Energies 2018, 11, 639. [CrossRef] open in new tab
  40. Mussatto, S.; Teixeira, J. Lignocellulose as raw material in fermentation processes. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 897-907. open in new tab
  41. Ezejiofor, T.I.N.; Enebaku, U.E.; Ogueke, C. Waste to wealth-value recovery from agro-food processing wastes using biotechnology: A review. Br. Biotechnol. J. 2014, 4, 418-481. [CrossRef] open in new tab
  42. Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis-A Technological Review. Energies 2012, 5, 4952-5001. [CrossRef] open in new tab
  43. Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 2010, 14, 919-937. [CrossRef] open in new tab
  44. Eker, S.; Sarp, M. Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. Int. J. Hydrogen Energy 2017, 42, 2562-2568. [CrossRef] open in new tab
  45. Emsley, A.M.; Ali, M.; Heywood, R.J. A size exclusion chromatography study of cellulose degradation. Polymer 2000, 41, 8513-8521. [CrossRef] open in new tab
  46. Sánchez, Ó.J.; Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270-5295. [CrossRef] [PubMed] open in new tab
  47. Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675-685. [CrossRef] [PubMed] open in new tab
  48. Zhu, J.Y.; Pan, X.; Zalesny, R.S. Pretreatment of woody biomass for biofuel production: Energy efficiency, technologies, and recalcitrance. Appl. Microbiol. Biotechnol. 2010, 87, 847-857. [CrossRef] [PubMed] open in new tab
  49. Zhu, J.; Li, Y.; Wu, X.; Miller, C.; Chen, P.; Ruan, R. Swine manure fermentation for hydrogen production. Bioresour. Technol. 2009, 100, 5472-5477. [CrossRef] [PubMed] open in new tab
  50. Karimi, K.; Emtiazi, G.; Taherzadeh, M.J. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 2006, 40, 138-144. [CrossRef] open in new tab
  51. Chang, V.S.; Holtzapple, M.T. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 2000, 84, 5-37. [CrossRef] open in new tab
  52. Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506-577. [CrossRef] [PubMed] open in new tab
  53. Liu, H.; Zhang, Y.X.; Hou, T.; Chen, X.; Gao, C.; Han, L.; Xiao, W. Mechanical deconstruction of corn stover as an entry process to facilitate the microwave-assisted production of ethyl levulinate. Fuel Process. Technol. 2018, 174, 53-60. [CrossRef] open in new tab
  54. Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103-112. [CrossRef] [PubMed] open in new tab
  55. Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sustain. Energy Rev. 2018, 90, 877-891. [CrossRef] open in new tab
  56. Choi, J.H.; Jang, S.K.; Kim, J.H.; Park, S.Y.; Kim, J.C.; Jeong, H.; Kim, H.Y.; Choi, I.G. Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renew. Energy 2018, 130, 952-960. [CrossRef] open in new tab
  57. Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665-694. [CrossRef] open in new tab
  58. Shi, X.L.; Hu, Q.; Chen, Y.; Wang, F.; Duan, P. Conversion of biomass components to methyl levulinate over an ultra-high performance fiber catalyst in impellers of the agitation system. J. Ind. Eng. Chem. 2018, 65, 264-271. [CrossRef] open in new tab
  59. Liu, L.; Chang, H.M.; Jameel, H.; Park, S. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system. Bioresour. Technol. 2018, 252, 165-171. [CrossRef] [PubMed] open in new tab
  60. Cocero, M.J.; Cabeza, Á.; Abad, N.; Adamovic, T.; Vaquerizo, L.; Martínez, C.M.; Pazo-Cepeda, M.V. Understanding biomass fractionation in subcritical & supercritical water. J. Supercrit. Fluids 2018, 133, 550-565. open in new tab
  61. Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310-318. [CrossRef] [PubMed] open in new tab
  62. Bui, N.Q.; Fongarland, P.; Rataboul, F.; Dartiguelongue, C.; Charon, N.; Vallee, C.; Essayem, N. Controlled pinewood fractionation with supercritical ethanol: A prerequisite toward pinewood conversion into chemicals and biofuels. Comptes Rendus Chim. 2018, 21, 555-562. [CrossRef] open in new tab
  63. Sannigrahi, P.; Ragauskas, A.J. Fundamentals of Biomass Pretreatment by Fractionation. Aqueous Pretreat. Plant Biomass Biol. Chem. Convers. Fuels Chem. 2013. [CrossRef] open in new tab
  64. Gandarias, I.; García-fernández, S.; Obregón, I.; Agirrezabal-telleria, I.; Luis, P. Production of 2-methylfuran from biomass through an integrated biore fi nery approach. Fuel Process. Technol. 2018, 178, 336-343. [CrossRef] open in new tab
  65. Tan, Y.T.; Ngoh, G.C.; Chua, A.S.M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind. Crops Prod. 2018, 123, 271-277. [CrossRef] open in new tab
  66. Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 2017, 160, 196-206. [CrossRef] open in new tab
  67. Łukajtis, R.; Rybarczyk, P.; Kucharska, K.; Konopacka-Łyskawa, D.; Słupek, E.; Wychodnik, K.; Kamiński, M. Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies 2018, 11, 886. [CrossRef] open in new tab
  68. Jørgensen, H.; Kristensen, J.B.; Felby, C. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels Bioprod. Biorefin. 2007, 1, 119-134. [CrossRef] open in new tab
  69. Santiago, A.; Neto, C.P. Eucalyptus globulus kraft process modifications: Effect on pulping and bleaching performance and papermaking properties of bleached pulps. J. Chem. Technol. Biotechnol. 2008, 83, 1298-1305. [CrossRef] open in new tab
  70. Remsing, R.C.; Swatloski, R.P.; Rogers, R.D.; Moyna, G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A 13C and 35/37Cl NMR relaxation study on model systems. Chem. Commun. 2006, 12, 1271-1273. [CrossRef] [PubMed] open in new tab
  71. Zhang, Y.H.P.; Lynd, L.R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 2004, 88, 797-824. [CrossRef] [PubMed] open in new tab
  72. Remsing, R.C.; Hernandez, G.; Swatloski, R.P.; Massefski, W.W.; Rogers, R.D.; Moyna, G. Solvation of carbohydrates in n,n'-dialkylimidazolium ionic liquids: A multinuclear NMR spectroscopy study. J. Phys. Chem. B 2008, 112, 11071-11078. [CrossRef] [PubMed] open in new tab
  73. Mascal, M.; Nikitin, E.B. Direct, High-Yield Conversion of Cellulose into Biofuel. Angew. Chem. 2008, 120, 8042-8044. [CrossRef] open in new tab
  74. Azbar, N.; Dokgöz, F.T.Ç.; Peker, Z. Optimization of Basal Medium for Fermentative Hydrogen Production from Cheese Whey Wastewater. Int. J. Green Energy 2009, 6, 371-380. [CrossRef] open in new tab
  75. Guo, F.; Fang, Z.; Xu, C.C.; Smith, R.L. Solid acid mediated hydrolysis of biomass for producing biofuels. Prog. Energy Combust. Sci. 2012, 38, 672-690. [CrossRef] open in new tab
  76. Azbar, N.; Dokgöz, F.T.; Keskin, T.; Eltem, R.; Korkmaz, K.S.; Gezgin, Y.; Akbal, Z.; Öncel, S.; Dalay, M.C.; Gönen, Ç.; et al. Comparative Evaluation of Bio-Hydrogen Production from Cheese Whey Wastewater Under Thermophilic and Mesophilic Anaerobic Conditions. Int. J. Green Energy 2009, 6, 192-200. [CrossRef] open in new tab
  77. Saeed, A.; Fatehi, P.; Ni, Y.; van Heiningen, A. Impact of furfural on the sugar analysis of pre-Hydrolysis liquor of kraft-based dissolving pulp production process using the HPAEC technique. BioResources 2011, 6, 1707-1718.
  78. Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D.J.; McMillan, J.D.; Zhang, Y.H.P. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure and substrate accessibility. Biotechnol. Bioeng. 2009, 103, 715-725. [CrossRef] [PubMed] open in new tab
  79. Teymouri, F.; Laureano-Perez, L.; Alizadeh, H.; Dale, B.E. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 2005, 96, 2014-2018. [CrossRef] [PubMed] open in new tab
  80. Zhou, S.; Ingram, L.O. Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J. Bacteriol. 2000, 182, 5676-5682. [CrossRef] [PubMed] open in new tab
  81. Sinha, P.; Pandey, A. An evaluative report and challenges for fermentative biohydrogen production. Int. J. Hydrogen Energy 2011, 36, 7460-7478. [CrossRef] open in new tab
  82. Dong-Hoon, K.; Sang-Hyoun, K.; Hang-Sik, S. Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb. Technol. 2009, 45, 181-187.
  83. Quéméneur, M.; Hamelin, J.; Barakat, A.; Steyer, J.P.; Carrère, H.; Trably, E. Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrogen Energy 2012, 37, 3150-3159. [CrossRef] open in new tab
  84. Liu, H.; Zhang, T.; Fang, H.H.P. Thermophilic H2 production from a cellulose-containing wastewater. Biotechnol. Lett. 2003, 25, 365-369. [CrossRef] [PubMed] open in new tab
  85. Lin, Z.; Huang, H.; Zhang, H.; Zhang, L.; Yan, L.; Chen, J. Ball Milling Pretreatment of Corn Stover for Enhancing the Efficiency of Enzymatic Hydrolysis. Appl. Biochem. Biotechnol. 2010, 162, 1872-1880. [CrossRef] [PubMed] open in new tab
  86. Li, H.; Qu, Y.; Yang, Y.; Chang, S.; Xu, J. Microwave irradiation-A green and efficient way to pretreat biomass. Bioresour. Technol. 2016, 199, 34-41. [CrossRef] [PubMed] open in new tab
  87. Bussemaker, M.J.; Xu, F.; Zhang, D. Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresour. Technol. 2013, 148, 15-23. [CrossRef] [PubMed] open in new tab
  88. Liu, X.; Fatehi, P.; Ni, Y. Adsorption of lignocellulosic materials dissolved in pre-hydrolysis liquor of kraft-based dissolving pulp production process on polymer-modified activated carbons. J. Sci. Technol. For. Prod. Process. 2011, 1, 46-54. open in new tab
  89. Kortei, N.K.; Wiafe-kwagyan, M. Evaluating the effect of gamma radiation on eight different agro-lignocellulose waste materials for the production of oyster mushrooms (Pleurotus eous (Berk.) Sacc. strain P-31). Croat. J. Food Technol. 2014, 9, 83-90. open in new tab
  90. Zagórski, Z. Modification, degradation and stabilization of polymers in view of the classification of radiation spurs. Radiat. Phys. Chem. 2002, 63, 9-19. [CrossRef] open in new tab
  91. Kumar, N.; Das, D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb. Technol. 2001, 29, 280-287. [CrossRef] open in new tab
  92. Singh, D.P.; Trivedi, R.K. Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. Int. J. ChemTech Res. 2013, 5, 727-734.
  93. Zhang, J.; Ma, X.; Yu, J.; Zhang, X.; Tan, T. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour. Technol. 2011, 102, 4585-4589. [CrossRef] [PubMed] open in new tab
  94. Talebnia, F.; Karakashev, D.; Angelidaki, I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 2010, 101, 4744-4753. [CrossRef] [PubMed] open in new tab
  95. Cheng, Y.S.; Zheng, Y.; Yu, C.W.; Dooley, T.M.; Jenkins, B.M.; Vandergheynst, J.S. Evaluation of high solids alkaline pretreatment of rice straw. Appl. Biochem. Biotechnol. 2010, 162, 1768-1784. [CrossRef] [PubMed] open in new tab
  96. Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M. Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnol. Biofuels 2009, 2. [CrossRef] [PubMed] open in new tab
  97. Gámez, S.; González-Cabriales, J.J.; Ramírez, J.A.; Garrote, G.; Vázquez, M. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng. 2006, 74, 78-88. [CrossRef] open in new tab
  98. Chang, V.S.; Nagwani, M.; Kim, C.H.; Holtzapple, M.T. Oxidative lime pretreatment of high-lignin biomass. Appl. Biochem. Biotechnol. 2001, 94, 1-28. [CrossRef] open in new tab
  99. Xu, J.; Cheng, J.J.; Sharma-Shivappa, R.R.; Burns, J.C. Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production. Energy Fuels 2010, 24, 2113-2119. [CrossRef] open in new tab
  100. Zhang, Y.; Shen, J. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int. J. Hydrogen Energy 2006, 31, 441-446. [CrossRef] open in new tab
  101. Sills, D.L.; Gossett, J.M. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresour. Technol. 2011, 102, 1389-1398. [CrossRef] [PubMed] open in new tab
  102. Ibrahim, M.M.; El-Zawawy, W.K.; Abdel-Fattah, Y.R.; Soliman, N.A.; Agblevor, F.A. Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr. Polym. 2011, 83, 720-726. [CrossRef] open in new tab
  103. Ozmihci, S.; Kargi, F. Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme Microb. Technol. 2007, 41, 876-880. [CrossRef] open in new tab
  104. Dinamarca, C.; Bakke, R. Process parameters affecting the sustainability of fermentative hydrogen production: A short-review. Int. J. Energy Environ. 2011, 2, 1067-1078.
  105. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673-686. [CrossRef] [PubMed] open in new tab
  106. Jung, H.; Yoon, H.G.; Park, W.; Choi, C.; Wilson, D.B.; Shin, D.H.; Kim, Y.J. Effect of sodium hydroxide treatment of bacterial cellulose on cellulase activity. Cellulose 2007, 15, 465-471. [CrossRef] open in new tab
  107. Olver, B.; Van Dyk, J.S.; Beukes, N.; Pletschke, B.I. Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates. 3 Biotech 2011, 1, 187-192. [CrossRef] [PubMed] open in new tab
  108. Chen, C.; Lin, C. Using sucrose as a substrate in an anaerobic hydrogen-producing reactor. Adv. Environ. Res. 2003, 7, 695-699. [CrossRef] open in new tab
  109. Rabelo, S.C.; Amezquita Fonseca, N.A.; Andrade, R.R.; Maciel Filho, R.; Costa, C.A. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 2011, 35, 2600-2607. [CrossRef] open in new tab
  110. Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 2009, 100, 2580-2587. [CrossRef] [PubMed] open in new tab
  111. Zakrzewska, M.E.; Bogel-Łukasik, E.; Bogel-Łukasik, R. Solubility of Carbohydrates in Ionic Liquids. Energy Fuels 2010, 24, 737-745. [CrossRef] open in new tab
  112. Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974-4975. [CrossRef] [PubMed] open in new tab
  113. Elgharbawy, A.A.; Alam, M.Z.; Moniruzzaman, M.; Goto, M. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem. Eng. J. 2016, 109, 252-267. [CrossRef] open in new tab
  114. Chandra, R.P.; Bura, R.; Mabee, W.E.; Berlin, A.; Pan, X.; Saddler, J.N. Substrate Pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In Biofuels; open in new tab
  115. Olsson, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67-93. open in new tab
  116. Carneiro, T.F.; Timko, M.; Prado, J.M.; Berni, M. Chapter 17-Biomass Pretreatment With Carbon Dioxide. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Cambridge, MA, USA, 2016; pp. 385-407, ISBN 9780128023235. open in new tab
  117. Foster, B.L.; Dale, B.E.; Doran-Peterson, J.B. Enzymatic Hydrolysis of Ammonia-Treated Sugar Beet Pulp. In Twenty-Second Symposium on Biotechnology for Fuels and Chemicals; open in new tab
  118. Davison, B.H., McMillan, J., Finkelstein, M., Eds.; Humana Press: Totowa, NJ, USA, 2001; pp. 269-282.
  119. Nomanbhay, S.M.; Hussain, R.; Palanisamy, K. Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. J. Sustain. Bioenergy Syst. 2013, 3, 7-17. [CrossRef] open in new tab
  120. Bothwell, M.K.; Walke, L.P.; Wilson, D.B.; Irwin, D.C.; Price, M. Synergism between pure Thermomonospora fusca and Trichoderma reesei cellulases. Biomass Bioenergy 1993, 4, 293-299. [CrossRef] open in new tab
  121. McIntosh, S.; Vancov, T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 2010, 101, 6718-6727. [CrossRef] [PubMed] open in new tab
  122. Liu, Z.; Fatehi, P.; Sadeghi, S.; Ni, Y. Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresour. Technol. 2011, 102, 9613-9618. [CrossRef] [PubMed] open in new tab
  123. Boisset, C.; Fraschini, C.; Schülein, M.; Henrissat, B.; Chanzy, H. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 2000, 66, 1444-1452. [CrossRef] [PubMed] open in new tab
  124. Boisset, C.; Pétrequin, C.; Chanzy, H.; Henrissat, B.; Schlein, M. Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol. Bioeng. 2001, 72, 339-345. [CrossRef] open in new tab
  125. Qi, M.; Jun, H.S.; Forsberg, C.W. Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl. Environ. Microbiol. 2007, 73, 6098-6105. [CrossRef] [PubMed] open in new tab
  126. Zhang, Y.H.P.; Lynd, L.R. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng. 2006, 94, 888-898. [CrossRef] [PubMed] open in new tab
  127. Ramírez-Ramírez, N.; Romero-García, E.R.; Calderón, V.C.; Avitia, C.I.; Téllez-Valencia, A.; Pedraza-Reyes, M. Expression, characterization and synergistic interactions of Myxobacter Sp. AL-1 Cel9 and Cel48 glycosyl hydrolases. Int. J. Mol. Sci. 2008, 9, 247-257. [CrossRef] [PubMed] open in new tab
  128. Berger, E.; Zhang, D.; Zverlov, V.V.; Schwarz, W.H. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol. Lett. 2007, 268, 194-201. [CrossRef] [PubMed] open in new tab
  129. Kovács, K. Production of Cellulolytic Enzymes with Trichoderma Atroviride Mutants for the Biomass-To-Bioethanol Process. Ph.D. Thesis, Lund University, Lund, Sweden, 2009. open in new tab
  130. Adelsberger, H.; Hertel, C.; Glawischnig, E.; Zverlov, V.V.; Schwarz, W.H. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: Reconstitution of the in vivo system from recombinant enzymes. Microbiology 2004, 150, 2257-2266. [CrossRef] [PubMed] open in new tab
  131. Vardakou, M.; Katapodis, P.; Topakas, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innov. Food Sci. Emerg. Technol. 2004, 5, 107-112. [CrossRef] open in new tab
  132. Sørensen, H.R.; Pedersen, S.; Meyer, A.S. Characterization of solubilized arabinoxylo-oligosaccharides by MALDI-TOF MS analysis to unravel and direct enzyme catalyzed hydrolysis of insoluble wheat arabinoxylan. Enzyme Microb. Technol. 2007, 41, 103-110. [CrossRef] open in new tab
  133. Cybinski, H.D.; Layton, I.; Lowry, B.J.; Dalrymple, P.B. An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl. Microbiol. Biotechnol. 1999, 52, 221-225. [CrossRef] [PubMed] open in new tab
  134. Kam, D.K.; Jun, H.S.; Ha, J.K.; Inglis, G.D.; Forsberg, C.W. Characteristics of adjacent family 6 acetylxylan esterases from Fibrobacter succinogenes and the interaction with the Xyn10E xylanase in hydrolysis of acetylated xylan. Can. J. Microbiol. 2005, 51, 821-832. [CrossRef] [PubMed] open in new tab
  135. Raweesri, P.; Riangrungrojana, P.; Pinphanichakarn, P. α-l-Arabinofuranosidase from Streptomyces sp. PC22: Purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour. Technol. 2008, 99, 8981-8986. [CrossRef] [PubMed] open in new tab
  136. Gasparic, A.; Martin, J.; Daniel, A.S.; Flint, H.J. A xylan hydrolase gene cluster in Prevotella ruminicola B14: Sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and β-(1,4)-xylosidase activities. Appl. Environ. Microbiol. 1995, 61, 2958-2964. [PubMed] open in new tab
  137. Beukes, N.; Pletschke, B.I. Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour. Technol. 2011, 102, 5207-5213. [CrossRef] [PubMed] open in new tab
  138. Beukes, N.; Chan, H.; Doi, R.H.; Pletschke, B.I. Synergistic associations between Clostridium cellulovorans enzymes XynA, ManA and EngE against sugarcane bagasse. Enzyme Microb. Technol. 2008, 42, 492-498. [CrossRef] open in new tab
  139. Leonowicz, A.; Matuszewska, A.; Luterek, J.; Ziegenhagen, D.; Wojtaś-Wasilewska, M.; Cho, N.S.; Hofrichter, M.; Rogalski, J. Biodegradation of Lignin by White Rot Fungi. Fungal Genet. Biol. 1999, 27, 175-185. [CrossRef] [PubMed] open in new tab
  140. Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.V.M.; Cardoso, V.M.G.; Cone, J.W.; Ferreira, L.M.M.; Colaço, J.; Sequeira, C.A. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 2008, 141, 326-338. [CrossRef] open in new tab
  141. Tuor, U.; Winterhalter, K.; Fiechter, A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 1995, 41, 1-17. [CrossRef] open in new tab
  142. Schilling, J.S.; Tewalt, J.P.; Duncan, S.M. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl. Microbiol. Biotechnol. 2009, 84, 465-475. [CrossRef] [PubMed] open in new tab
  143. Yelle, D.J.; Ralph, J.; Lu, F.; Hammel, K.E. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ. Microbiol. 2008, 10, 1844-1849. [CrossRef] [PubMed] open in new tab
  144. Martin-Sampedro, R.; Filpponen, I.; Hoeger, I.C.; Zhu, J.Y.; Laine, J.; Rojas, O.J. Rapid and Complete Enzyme Hydrolysis of Lignocellulosic Nanofibrils. ACS Macro Lett. 2012, 1, 1321-1325. [CrossRef] open in new tab
  145. Diaz, A.; Le Toullec, J.; Blandino, A.; De Ory, I.; Caro, I. Pretreatment of rice hulls with alkaline peroxide to enhance enzyme hydrolysis for ethanol production. Chem. Eng. Trans. 2013, 32, 949-954.
  146. Moretti, M.M.S.; Bocchini-Martins, D.A.; Nunes, C.C.C.; Villena, M.A.; Perrone, O.M.; Silva, R.; Boscolo, M.; Gomes, E. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl. Energy 2014, 122, 189-195. [CrossRef] open in new tab
  147. Duarte, C.L.; Ribeiro, M.A.; Oikawa, H.; Mori, M.N.; Napolitano, C.M.; Galvão, C.A. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse. Radiat. Phys. Chem. 2012, 81, 1008-1011. [CrossRef] open in new tab
  148. Dąbkowska, K.; Chmielewska, I.; Pilarek, M.; Szewczyk, W.K. Wpływ metody wstępnej obróbki surowca lignocelulozowego na efektywność hydrolizy enzymatycznej. Inżynieria i Apar. Chem. 2012, 51, 112-114.
  149. Saucedo-Luna, J.; Castro-Montoya, A.J.; Rico, J.L.; Campos-García, J. Optimización de hidrólisis ácida de bagaso de Agave tequilana Weber. Rev. Mex. Ing. química 2010, 9, 91-97.
  150. Romero, I.; Ruiz, E.; Castro, E.; Moya, M. Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Des. 2010, 88, 633-640. [CrossRef] open in new tab
  151. Lenihan, P.; Orozco, A.; O'Neill, E.; Ahmad, M.N.M.; Rooney, D.W.; Walker, G.M. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010, 156, 395-403. [CrossRef] open in new tab
  152. Lawther, J.M.; Sun, R.; Banks, W.B. Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J. Appl. Polym. Sci. 1996, 60, 1827-1837. [CrossRef] open in new tab
  153. Hernández, E.; García, A.; López, M.; Puls, J.; Parajó, J.C.; Martín, C. Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods. Ind. Crops Prod. 2013, 44, 227-231. [CrossRef] open in new tab
  154. Haque, M.A.; Barman, D.N.; Kang, T.H.; Kim, M.K.; Kim, J.; Kim, H.; Yun, H.D. Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosyst. Eng. 2013, 114, 294-305. [CrossRef] open in new tab
  155. Gu, F.; Yang, L.; Jin, Y.; Han, Q.; Chang, H.; Jameel, H.; Phillips, R. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresour. Technol. 2012, 124, 299-305. [CrossRef] [PubMed] open in new tab
  156. Cao, X.; Peng, X.; Sun, S.; Zhong, L.; Wang, S.; Lu, F.; Sun, R. Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr. Polym. 2014, 111, 400-403. [CrossRef] [PubMed] open in new tab
  157. Liu, X.; Xu, Q.; Liu, J.; Yin, D.; Su, S.; Ding, H. Hydrolysis of cellulose into reducing sugars in ionic liquids. Fuel 2016, 164, 46-50. [CrossRef] open in new tab
  158. Ma, H.H.; Zhang, B.X.; Zhang, P.; Li, S.; Gao, Y.F.; Hu, X.M. An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process. Technol. 2016, 148, 138-145. [CrossRef] open in new tab
  159. Kabir, M.M.; Rajendran, K.; Taherzadeh, M.J.; Sárvári Horváth, I. Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour. Technol. 2015, 178, 201-208. [CrossRef] [PubMed] open in new tab
  160. Sun, S.; Cao, X.; Sun, S.; Xu, F.; Song, X.; Sun, R.C.; Jones, G.L. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol. Biofuels 2014, 7. [CrossRef] [PubMed] open in new tab
  161. Xiao, X.; Bian, J.; Li, M.F.; Xu, H.; Xiao, B.; Sun, R.C. Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour. Technol. 2014, 159, 41-47. [CrossRef] [PubMed] open in new tab
  162. Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7-12. [CrossRef] [PubMed] open in new tab
  163. Selig, M.J.; Viamajala, S.; Decker, S.R.; Tucker, M.P.; Himmel, M.E.; Vinzant, T.B. Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose. Biotechnol. Prog. 2007, 23, 1333-1339. [CrossRef] [PubMed] open in new tab
  164. Kumar, R.; Wyman, C.E. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol. Progr. 2009, 25. [CrossRef] [PubMed] open in new tab
  165. Yang, H.Y.; Wang, K.; Song, X.L.; Xu, F.; Sun, R.C. Enhanced enzymatic hydrolysis of triploid poplar following stepwise acidic pretreatment and alkaline fractionation. Process Biochem. 2012, 47. [CrossRef] open in new tab
  166. Amiri, H.; Karimi, K. Autohydrolysis: A promising pretreatment for the improvement of acetone, butanol, and ethanol production from woody materials. Chem. Eng. Sci. 2015, 137, 722-729. [CrossRef] open in new tab
  167. Kassim, M.A.; Bhattacharya, S. Dilute alkaline pretreatment for reducing sugar production from Tetraselmis suecica and Chlorella sp. biomass. Process Biochem. 2016, 51, 1757-1766. [CrossRef] open in new tab
  168. Song, H.T.; Gao, Y.; Yang, Y.M.; Xiao, W.J.; Liu, S.H.; Xia, W.C.; Liu, Z.L.; Yi, L.; Jiang, Z.B. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresour. Technol. 2016, 219, 710-715. [CrossRef] [PubMed] open in new tab
  169. Kassim, M.A.; Khalil, H.P.S.A.; Serri, N.A.; Kassim, M.H.; Syakir, M.I.; Aprila, N.A.S.; Dungani, R. Irradiation Pretreatment of Tropical Biomass and Biofiber for Biofuel Production. In Radiation Effects in Materials; open in new tab
  170. Monteiro, W.A., Ed.; In Tech: London, UK, 2016. [CrossRef] open in new tab
  171. Mussatto, S.I.; Bikaki, N. Technoeconomic Consideration fro Biomass Fractionation in a Biorafinery Context. In Biomass Fractionation Technologies fro a Lignocellulosic Feedstock Based Biorafinery; Mussatto, S.I., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 587-610. open in new tab
  172. Wang, M.; Wu, M.; Huo, H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ. Res. Lett. 2007, 2. [CrossRef] open in new tab
  173. Madanayake, B.N.; Gan, S.; Eastwick, C.; Ng, H.K. Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques. Fuel Process. Technol. 2017, 159, 287-305. [CrossRef] open in new tab
  174. Tao, L.; Aden, A.; Elander, R.T.; Pallapolu, V.R.; Lee, Y.Y.; Garlock, R.J.; Balan, V.; Dale, B.E.; Kim, Y.; Mosier, N.S.; et al. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour. Technol. 2011, 102, 11105-11114. [CrossRef] [PubMed] open in new tab
  175. Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49-58. [CrossRef] [PubMed] open in new tab
  176. Chen, H.; Fu, X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2016, 57, 468-478. [CrossRef] open in new tab
  177. Silva, A.R.G.; Ortega, C.E.T.; Rong, B.G. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour. Technol. 2016, 218, 561-570. [CrossRef] [PubMed] open in new tab
  178. Binod, P.; Satyanagalakshmi, K.; Sindhu, R.; Janu, K.U.; Sukumaran, R.K.; Pandey, A. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energy 2012, 37, 109-116. [CrossRef] open in new tab
  179. Lai, L.W.; Idris, A. Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk. Renew. Energy 2016, 99, 738-746. [CrossRef] open in new tab
  180. Ninomiya, K.; Kohori, A.; Tatsumi, M.; Osawa, K.; Endo, T.; Kakuchi, R.; Ogino, C.; Shimizu, N.; Takahashi, K. Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresour. Technol. 2015, 176, 169-174. [CrossRef] [PubMed] open in new tab
  181. Baral, N.R.; Shah, A. Techno-economic analysis of utilization of stillage from a cellulosic biorefinery. Fuel Process. Technol. 2017, 166, 59-68. [CrossRef] open in new tab
  182. Trinh, T.N.; Jensen, P.A.; Sárossy, Z.; Dam-Johansen, K.; Knudsen, N.O.; Sørensen, H.R.; Egsgaard, H. Fast pyrolysis of lignin using a pyrolysis centrifuge reactor. Energy Fuels 2013, 27, 3802-3810. [CrossRef] open in new tab
  183. Fatehi, P. Production of Biofuels from Cellulose of Woody Biomass. Cell. Biomass Convers. 2013. [CrossRef] open in new tab
  184. Ioelovich, M. Recent Findings and the Energetic Potential of Plant Biomass as a Renewable Source of Biofuels-A Review. BioResources 2015, 10, 1879-1914. open in new tab
  185. Kucharska, K.; Hołowacz, I.; Konopacka-Łyskawa, D.; Rybarczyk, P.; Kami, M. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. 2018, 129, 384-408. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 397 times

Recommended for you

Meta Tags