Abstract
The outer membrane (OM) of Gram-negative bacteria is asymmetric due to the presence of lipopolysaccharide (LPS) facing the outer leaflet of the OM and phospholipids facing the periplasmic side. LPS is essential for bacterial viability, since it provides a permeability barrier and is a major virulence determinant in pathogenic bacteria. In Escherichia coli, several steps of LPS biosynthesis and assembly are regulated by the RpoE sigma factor and stress responsive two-component systems as well as dedicated small RNAs. LPS composition is highly heterogeneous and dynamically altered upon stress and other challenges in the environment because of the transcriptional activation of RpoE regulon members and posttranslational control by RpoE-regulated Hfq-dependent RybB and MicA sRNAs. The PhoP/Q two-component system further regulates Kdo2-lipid A modification via MgrR sRNA. Some of these structural alterations are critical for antibiotic resistance, OM integrity, virulence, survival in host, and adaptation to specific environmental niches. The heterogeneity arises following the incorporation of nonstoichiometric modifications in the lipid A part and alterations in the composition of inner and outer core of LPS. The biosynthesis of LPS and phospholipids is tightly coupled. This requires the availability of metabolic precursors, whose accumulation is controlled by sRNAs like SlrA, GlmZ, and GlmY.
Citations
-
4 4
CrossRef
-
0
Web of Science
-
3 8
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1155/2015/153561
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY
no. 2015,
pages 1 - 16,
ISSN: 1110-7243 - Language:
- English
- Publication year:
- 2015
- Bibliographic description:
- Klein-Raina G., Raina S.: Regulated Control of the Assembly and Diversity of LPS by Noncoding sRNAs// JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY. -Vol. 2015, (2015), s.1-16
- DOI:
- Digital Object Identifier (open in new tab) 10.1155/2015/153561
- Verified by:
- Gdańsk University of Technology
seen 158 times