Requirements, modifications and methods of mechanical testing of bone cement – literature review - Publication - Bridge of Knowledge

Search

Requirements, modifications and methods of mechanical testing of bone cement – literature review

Abstract

The Aim of the paper is to show the basic requirements for the bone cement, its modifications in terms of physical, mechanical and biological properties and testing methods. This publication is intended to be a source of systematized basic knowledge regarding the modified bone cement.

Cite as

Full text

download paper
downloaded 297 times
Publication version
Accepted or Published Version
License
Copyright (2017 by ISASDMT)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
European Journal of Medical Technologies pages 1 - 10,
ISSN: 2353-1029
Language:
English
Publication year:
2017
Bibliographic description:
Wekwejt M., Świeczko-Żurek B., Szkodo M.: Requirements, modifications and methods of mechanical testing of bone cement – literature review// European Journal of Medical Technologies. -., nr. 3(16) (2017), s.1-10
Bibliography: test
  1. Koh I., Gombert Y., Persson C., Engqvist H., Helgason B., Ferguson S.: Ceramic cement as a potential stand-alone treatment for bone fractures: An in vitro study of ceramic-bone composites. J. Mech. Behav. Biomed. Mater. 61 (2016) 519-529. open in new tab
  2. Balin A.:Cementy w chirurgii kostnej, WPŚ, Gliwice 2016.
  3. Koh I., López A., Pinar A., Helgason B., Ferguson S.: The effect of water on the mechanical properties of soluble and insoluble ceramic cements. J. Mech. Behav. Biomed. Mater. 51 (2015) 50-60. open in new tab
  4. Slane J., Vivanco J., Meyer J., Ploeg H., Squire M.: Modification of acrylic bone cement with mesoporous silica nanoparticles: Effects on mechanical, fatigue and absorption properties. J. Mech. Behav. Biomed. Mater. 29 (2014) 451-461. open in new tab
  5. Gomes F., Pires R., Reis R.: Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability. Mater. Sci. Eng. C 33 (2013) 1361-1370. open in new tab
  6. Karimzadeh A., Ayatollahi M.R.: Investigation of mechanical and tribological properties of bone cement by nano-indentation and nano-scratch experiments. Polym. Test. 31 (2012). open in new tab
  7. Tanner K.E., Wang J. S., Kjellson F., Lidgren L: Comparison of two methods of fatigue testing bone cement. Acta Biomater. 6 (2010) 943-952. open in new tab
  8. Michael F., Khalid M., Walvekar R., Ratman C.: Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater. Sci. Eng. C 67 (2016) 792-806. open in new tab
  9. Kim S., Jeon S.: Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J. Ind. Eng. Chem. 18 (2012) 128-136. open in new tab
  10. Khandaker M., Meng Z.: The Effect of Nanoparticles and Alternative Monomer on the Exothermic Temperature of PMMA Bone Cement. Procedia Eng. 105 (2015) 946-952. 11. ISO 5833. open in new tab
  11. Rodrigues D.C., Ordway N.R., Ru-Jyu Ma C., Fayyazi A.H., Hasenwinkel J.M.: An ex vivo exothermal and mechanical evaluation of two-solution bone cements in vertebroplasty. Spine J. 11 (2011) 432-439. open in new tab
  12. Tozzi G., Zhang Q., Tong J.: Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression. J. Biomech. 14 (2014) 3466-3474. open in new tab
  13. Ayre W., Denyer S., Evans S.:Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements. J. Mech. Behav. Biomed. Mater. 32 (2014) 76-88. open in new tab
  14. Slane J., Vivanco J., Ebenstein D., Squire M., Ploeg H.: Multiscale characterization of acrylic bone cement modified with functionalized mesoporous silica nanoparticles. J. Mech. Behav. Biomed. Mater. 37 (2014) 141-152. open in new tab
  15. Sanz-Ruiz P., Paz E., Abenojar E., Real J., Forriol F., Vaquero J.: Influence of the physiological medium on the mechanical properties of bone cement: Can current studies be extrapolated?. Rev. Española Cirugía Ortopédica y Traumatol. 58 (2014) 3-10. open in new tab
  16. Gutiérrez-Mejía A.: Synthesis and characterization of core-shell nanoparticles and their influence on the mechanical behavior of acrylic bone cements. Mater. Sci. Eng. C 33 (2013) 1737-1743. open in new tab
  17. Zhang Y., Wang D., Wang F., Jiang S., Shu Y.: Modification of dicalcium silicate bone cement biomaterials by using carboxymethyl cellulose. J. Non. Cryst. Solids 426 (2015) 164-168. open in new tab
  18. Tanner K.: Optimising the properties of injectable materials for vertebroplasty and kyphoplasty. Biomaterials for Spinal Surgery, 2012, 385-403. open in new tab
  19. Khaled S., Charpentier P., Rizkalla A.: Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes. Acta Biomater. 6 (2010) 3178-3186. open in new tab
  20. Nien Y.H., Huang C.: The mechanical study of acrylic bone cement reinforced with carbon nanotube," Mater. Sci. Eng. B. 169 (2010) 134-137. open in new tab
  21. Lewis G., Xu J., Madigan S., Towler M.: Influence of strontia on various properties of Surgical Simplex® P acrylic bone cement and experimental variants. Acta Biomater. 6 (2007) 970-979. open in new tab
  22. Hernández L., Gurruchaga M., Goñi I.: Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. J. Mater. Sci. Mater. Med. 20 (2009) 89-97. open in new tab
  23. Ormsby R., McNally T., Mitchell C., Dunne N.: Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties. J. Mech. Behav. Biomed. Mater. 3 (2010) 136-145. open in new tab
  24. Ormsby R., McNally T., O'Hare P., Burke G., Mitchell C., Dunne N.: Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 8 (2012) 1201-1212. open in new tab
  25. Mohammadi M., Hesaraki S., Hafezi-Ardakani M.: Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: Comparison of nano-titania, nano-silicon carbide and amorphous nano-silica. Ceram. Int. 40 (2014) 8377-8387. open in new tab
  26. Barandehfard F.: The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass- ionomer cement for dental restoration and its effects on mechanical properties. Ceram. Int. 42 (2016). open in new tab
  27. Kumar B. Cooke F.W: Fatigue Behaviour of Fiber Reinforced Bone Cement," in Fracture of Nano and Engineering Materials and Structures: Proceedings of the 16th European Conference of Fracture, Alexandroupolis, Greece, July 3--7, 2006, Gdoutos E.E., Ed. Dordrecht: Springer Netherlands, 2006, pp. 1023-1024. open in new tab
  28. Yu W., Wang D., Tang Q., Guo M., Zhao J.: Reinforcement of denture base PMMA with ZrO2 nanotubes. J. Mech. Behav. Biomed. Mater. 32 (2014) 192-197. open in new tab
  29. Yu W., Wang X., Zhao J., Tang Q., Wang M., Ning X.: Preparation and mechanical properties of reinforced hydroxyapatite bone cement with nano-ZrO2. Ceram. Int. 41 (2015) 10600-10606. open in new tab
  30. Massazza G., Bistolfi A., Verné E., Miola M., Ravera L., Rosso F.: Antibiotics and cements for the prevention of biofilm-associated infections. Woodhead Publishing Limited, 2014. open in new tab
  31. Miola M., Bruno M., Maina G., Fucale G., Lucchetta G., Vernè E.: Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Mater. Sci. Eng. C 43 (2014) 65-75. open in new tab
  32. Matos A., Gonçalves L., Rijo P., Vaz M., Almeida A., Bettencourt A.: A novel modified acrylic bone cement matrix. A step forward on antibiotic delivery against multiresistant bacteria responsible for prosthetic joint infections. Mater. Sci. Eng. C 38 (2014) 218-226. open in new tab
  33. Slane J., Vivanco J., Rose W., Ploeg H., Squire M.: Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater. Sci. Eng. C 48 (2015) 188-196. open in new tab
  34. Paz E., Sanz-Ruiz P., Abenojar J., Vaquero-Martín J., Forriol F., Real J.: Evaluation of Elution and Mechanical Properties of High-Dose Antibiotic-Loaded Bone Cement: Comparative 'In Vitro' Study of the Influence of Vancomycin and Cefazolin. J. Arthroplasty 30 (2015)1423-1429. open in new tab
  35. Verné E.: Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility. Mater. Sci. Eng. C. Mater. Biol. Appl. 53 (2015) 95-103. open in new tab
  36. Pithankuakul K., Samranvedhya W., Visutipol B., Rojviroj S.: The Effects of Different Mixing Speeds on the Elution and Strength of High-Dose Antibiotic-Loaded Bone Cement Created With the Hand-Mixed Technique. J. Arthroplasty 30 (2015) 858-863. open in new tab
  37. Miola M., Bistolfi A., Valsania M., Bianco C., Fucale G., Verné E.: Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy. Mater. Sci. Eng. C 33 (2013) 3025- 3032. open in new tab
  38. Tan H.., Guo S., Yang S., Xu X., Tang T.: Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement. Acta Biomater. 8 (2012) 2166-2174. open in new tab
  39. Jeong N., Park J., Yoo K., Kim W., Kim D., Yoon S.: Preparation, characterization, and in-vitro performance of novel injectable silanized-hydroxypropyl methylcellulose/phase-transformed calcium phosphate composite bone cements. Curr. Appl. Phys. 16 (2016) 1523-1532. open in new tab
  40. Serbetci K., Korkusuz F., Hasirci N: Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym. Test. 23 (2004) 145-155. open in new tab
  41. Sheafi E., Tanner K.: Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement. J. Mech. Behav. Biomed. Mater. 29 (2014) 91-102. open in new tab
  42. Pacheco-Salazar O., Wakayama S., Sakai T., Cauich-Rodríguez J., Ríos-Soberanis C., Cervantes-Uc J.: Evaluation of damage progression and mechanical behavior under compression of bone cements containing core-shell nanoparticles by using acoustic emission technique. J. Mech. Behav. Biomed. Mater. 46 (2015) 137-147. open in new tab
  43. Malzbender J., Steinbrech R.: Mechanical properties of coated materials and multi-layered composites determined using bending methods. Surf. Coatings Technol. 176 (2004) 165-172. 47. ISO 178. open in new tab
  44. Briscoe B., Evans P., Biswas S., Sinha S.: The hardnesses of poly(methylmethacrylate). Tribol. Int. 29 (1996) 93-104. open in new tab
  45. ASTM D5045.
  46. Williams J.: Analytical models of scratch hardness. Tribol. Int. 29 (1996) 675-694. open in new tab
Verified by:
Gdańsk University of Technology

seen 434 times

Recommended for you

Meta Tags