Role of bead sequence in underwater welding - Publication - Bridge of Knowledge

Search

Role of bead sequence in underwater welding

Abstract

This paper presents examinations of the role of the bead sequence in underwater welding. Two specimens of wet welded layers made by covered electrodes with the use of normalized S355G10+N steel were welded by a reasonable bead sequence. For each specimen, metallographic macro- and micro-scopic tests were done. Then, Vickers HV10 hardness measurements were conducted for each pad weld in the welded layer. The results show that welding in the water environment carries many problems in the stability of the welding arc, which influences the properties of the welds. The effects of refining and tempering the structure in heat-affected zones of earlier laid beads was observed, which provides a reduction of hardness. The possibility of applying two techniques while welding the layer by the wet method is described. It is stated that a reasonable bead sequence can decrease the hardness in heat-affected zones up to 40 HV10. Tempering by heat from next beads can also change the microstructure in this area by tempering martensite and can decrease susceptibility to cold cracking.

Citations

  • 3 9

    CrossRef

  • 0

    Web of Science

  • 3 9

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 12,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Tomków J., Fydrych D., Rogalski G.: Role of bead sequence in underwater welding// Materials -Vol. 12,iss. 20 (2019), s.3372-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12203372
Bibliography: test
  1. Zhang, Y.; Jia, C.; Wang, J.; Zhao, B.; Wu, C. Investigation on the bubble dynamic behaviors and corresponding regulation method in underwater flux-cored arc welding. Proc. Inst. Mech. Eng. B 2019, 223, 1808-1817. [CrossRef] open in new tab
  2. Sun, K.; Zeng, M.; Shi, Y.; Hu, Y.; Shen, X. Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints. J. Mater. Process. Technol. 2018, 256, 190-201. [CrossRef] open in new tab
  3. Wang, J.; Sun, Q.; Teng, J.; Feng, J. Bubble evolution in ultrasonic wave-assisted underwater wet FCAW. Weld. J. 2019, 98, 150-163. open in new tab
  4. Guo, N.; Du, Y.; Maksimov, S.; Feng, J.; Yin, Z.; Krazhanovskyi, D.; Fu, Y. Study of metal transfer control in underwater wet FCAW using pulsed wire feed method. Weld. World 2018, 62, 87-94. [CrossRef] open in new tab
  5. Tomków, J.; Łabanowski, J.; Fydrych, D.; Rogalski, G. Cold cracking of S460N steel in water environment. Pol. Marit. Res. 2018, 25, 131-136. [CrossRef] open in new tab
  6. Gao, W.B.; Wang, D.; Cheng, F.; Deng, C.; Xu, W. Underwater wet welding for HSLA steels: Chemical composition, defects, microstructure, and mechanical properties. Acta Metall. Sin. Engl. 2015, 28, 1097-1108. [CrossRef] open in new tab
  7. Fu, Y.; Guo, N.; Du, Y.; Chen, H.; Xu, C.; Feng, J. Effect of metal transfer mode on spatter and arc stability in underwater flux-cored wire wet welding. J. Manuf. Process. 2018, 35, 161-168. [CrossRef] open in new tab
  8. Wang, J.; Sun, Q.; Ma, J.; Teng, J.; Jin, P.; Feng, J. Investigation of acoustic radiator affecting bubble-acoustic interaction in ultrasonic wave-assisted UWW at shallow water. J. Manuf. Process. 2018, 37, 563-577. [CrossRef] open in new tab
  9. Li, H.; Liu, D.; Ma, Q.; Guo, N.; Song, X.; Feng, J. Microstructure and mechanical properties of dissimilar welds between 16Mn and 304L in underwater wet welding. Sci. Technol. Weld. Join. 2018, 24, 1-7. [CrossRef] open in new tab
  10. Tomków, J.; Fydrych, D.; Rogalski, G.; Łabanowski, J. Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. Metall. 2019, 55, e140. [CrossRef] open in new tab
  11. Świerczyńska, A.; Fydrych, D.; Rogalski, G. Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int. J. Hydrogen Energy 2017, 42, 24532-24540. [CrossRef] open in new tab
  12. Tomków, J.; Rogalski, G.; Fydrych, D.; Łabanowski, J. Improvement of S355G10+N steel -weldability in water environment by Temper Bead Welding. J. Mater. Process. Technol. 2018, 262, 372-381. [CrossRef] open in new tab
  13. Tomków, J.; Rogalski, G.; Fydrych, D.; Łabanowski, J. Advantages of the application of temper bead welding technique during wet welding. Materials 2019, 12, 915. [CrossRef] [PubMed] open in new tab
  14. Jia, C.; Zhang, Y.; Wu, J.; Xing, C.; Zhao, B.; Wu, C. Comprehensive analysis of spatter loss in wet FCAW considering interactions of bubbles, droplets and arc-Part 1: Measurement and improvement. J. Manuf. Process. 2019, 40, 122-127. [CrossRef] Materials 2019, 12, 3372 9 of 10 open in new tab
  15. Wang, J.; Sun, Q.; Zhang, S.; Wang, C.; Wu, L.; Feng, F. Characterization of the underwater welding arc bubble through a visual sensing method. J. Mater. Process. Technol. 2018, 251, 95-108. [CrossRef] open in new tab
  16. Chen, H.; Guo, N.; Huang, L.; Zhang, X.; Feng, J.; Wang, G. Effects of arc bubble behaviors and characteristics on droplet transfer in underwater wet welding using in-situ imaging method. Mater. Des. 2019, 170, 107696. [CrossRef] open in new tab
  17. Wang, J.; Sun, Q.; Pan, Z.; Yang, J.; Feng, J. Effect of welding speed on bubble dynamics and process stability in mechanical constraint-assisted underwater wet welding of steel sheets. J. Mater. Process. Technol. 2019, 264, 389-401. [CrossRef] open in new tab
  18. Silva, L.F.; Santos, V.R.D.; Paciornik, S.; Rizzo, F.A.; Monteiro, M.J.; Bracarense, A.Q.; Pessoa, E.C.; Vieira, L.A.; Marinho, R.R. Influence of molybdenum in metal weld properties in welding wet with oxy-rutillic electrodes. Soldag. Inspeção 2013, 18, 102-109. [CrossRef] open in new tab
  19. Winarto, W.; Purnama, D.; Churniawan, I. The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates. AIP Conf. Proc. 2018, 1945, 020048. open in new tab
  20. Muktepavel, V.; Murzin, V.; Karpov, V.; Kurakin, A. Research on welding and processing behavior of electrodes and features of their application in "wet" underwater arc welding. Mater. Sci. Forum 2019, 946, 913-920. [CrossRef] open in new tab
  21. Guo, N.; Yang, Z.; Wang, M.; Yuan, X.; Feng, J. Microstructure and mechanical properties of an underwater wet welded dissimilar ferritic/austenitic steel joint. Strength Mater. 2015, 47, 12-18. [CrossRef] open in new tab
  22. Zhang, H.T.; Dai, X.Y.; Feng, J.C.; Hu, L.L. Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld. J. 2015, 94, 8-15.
  23. Gao, W.; Wang, D.; Cheng, F.; Di, X.; Deng, C.; Xu, W. Microstructural and mechanical performance of underwater wet welded S355 steel. J. Mater. Process. Technol. 2016, 238, 333-340. [CrossRef] open in new tab
  24. Yan, Y.; Liu, C.; Wang, C.; Shen, J. Mechanical properties and stress variations in multipass welded joint of low-alloy high-strength steel after layer-by-layer ultrasonic impact treatment. J. Mater. Eng. Perform. 2019, 28, 2726-2735. [CrossRef] open in new tab
  25. Vargas-Arista, B.; Mendoza-Camargo, O.; Zaragoza-Rivera, I.P.; Medina-Flores, A.; Cuevas-Salgado, A.; Garfias-García, E.; García-Vázquez, F. Influence of heat input on the Charpy ductile fracture behavior of reheated HAZ in GMAW multilayer welded joints on HSLA steel using digital fractographic analysis. Rev. Metal. 2019, 55, e143. [CrossRef] open in new tab
  26. Winczek, J. Modeling of temperature field during multi-pass GMAW surfacing or rebuilding of steel elements taking into account the heat of the deposit metal. Appl. Sci. 2018, 7, 6. [CrossRef] open in new tab
  27. Pańcikiewicz, K. Structure and properties of welded joints of 7CrMoVTiB10-10 (T24) steel. Adv. Mater. Sci. 2018, 18, 37-47. [CrossRef] open in new tab
  28. Yu, J.H.; Choi, Y.S.; Shim, D.S.; Park, S.H. Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties. Opt. Laser Technol. 2018, 106, 87-93. [CrossRef] open in new tab
  29. Pandey, C.; Mahapatra, M.; Kumar, P.; Saini, N.; Thakre, J.G.; Vidyarthy, R.S.; Narang, H.K. A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch. Civ. Mech. Eng. 2018, 18, 713-722. [CrossRef] open in new tab
  30. Tuz, L. Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel. Adv. Mater. Sci. 2018, 18, 34-42. [CrossRef] open in new tab
  31. Kurc-Lisiecka, A.; Piwnik, J.; Lisiecki, A. Laser welding of new grade of advanced high strength steel STRENX 1100 MC. Arch. Metall. Mater. 2017, 62, 1651-1657. [CrossRef] open in new tab
  32. Kik, T.; Górka, J. Numerical simulations of laser and hybrid S700MC T-joint welding. Materials 2019, 12, 516. [CrossRef] open in new tab
  33. Skowrońska, B.; Chmielewski, T.; Pachla, W.; Kulczyk, M.; Skiba, J.; Presz, W. Friction weldability of UFG 316L stainless steel. Arch. Metall. Mater. 2019, 64, 1051-1058.
  34. Konovalov, S.V.; Kormyashev, V.E.; Gromov, V.E.; Ivanov, Y.F.; Kapralov, E.V.; Semin, A.P. Formation features of structure-phase states of Cr-Nb-C-V containing coatings on martensitic steel. J. Surf. Investig. 2016, 10, 1119-1124. [CrossRef] open in new tab
  35. Chen, X.; Su, C.; Wang, Y.; Siddiquee, A.N.; Konovalov, S.; Jayalakshami, S.; Singh, R.A. Cold metal transfer (CMT) based wire and arc additive manufacture (WAAM) system. J. Surf. Investig. 2018, 12, 1278-1284. [CrossRef] open in new tab
  36. Dehghani, A.; Aslani, F. A review on defects in steel offshore structures and developed strengthening techniques. Structures 2019, 20, 635-657. [CrossRef] open in new tab
  37. Meng, X.; Chen, G.; Zhu, G.; Zhu, Y. Dynamic quantitative risk assessment of accidents inducted by leakage on offshore platforms using DEMATEL-BN. Int. J. Nav. Archit. Ocean Eng. 2019, 11, 22-32. [CrossRef] open in new tab
  38. Wodtke, M.; Olszewski, A.; Wójcikowski, A. FEM calculations in analysis of steel subsea water injection flowlines designing process. Pol. Marit. Res. 2018, 25, 84-93. [CrossRef] open in new tab
  39. Kolios, A.; Wang, L.; Mehmanparast, A.; Brennan, F. Determination of stress concentration factors in offshore wind welded structures through a hybrid experimental and numerical approach. Ocean Eng. 2019, 178, 38-47. [CrossRef] open in new tab
  40. Oh, K.Y.; Nam, W.; Ryu, M.S.; Kim, J.Y.; Epureanu, B.I. A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renew. Sustain. Energy Rev. 2018, 88, 16-36. [CrossRef] open in new tab
  41. ISO 2560-A Classification of Coated Rod Electrodes for Arc Welding of Unalloyed Steel and Fine-Grained Steel; ISO: Geneva, Switzerland, 1908. open in new tab
  42. EN ISO 17637:2017 Non-Destructive Testing of Welds-Visual Testing of Fusion-Welded Joints; ISO: Geneva, Switzerland, 2017. open in new tab
  43. EN ISO 9015-1:2011 Destructive Tests on Welds in Metallic Materials. Hardness Testing. Hardness Test on Arc Welded Joints; ISO: Geneva, Switzerland, 2011. open in new tab
  44. EN ISO 15614-1:2017 Specification and Qualification of Welding Procedures for Metallic Materials-Welding Procedure Test-Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys; ISO: Geneva, Switzerland, 2017. open in new tab
  45. Sun, Y.L.; Obasi, G.; Hamelin, C.J.; Vasileiou, A.N.; Flint, T.F.; Blakrishna, J.; Smith, M.C.; Francis, J.A. Effects of dilution on alloy content and microstructure in multi-pass steel welds. J. Mater. Process. Technol. 2019, 265, 71-86. [CrossRef] open in new tab
  46. Sun, Y.L.; Hamelin, C.J.; Flint, T.F.; Vasileiou, A.N.; Francis, A.; Smith, M.C. Prediction of dilution and its impact on the metallurgical and mechanical behavior of a multipass steel weldment. J. Press. Vessel Technol. 2019, 141, 061405. [CrossRef] open in new tab
  47. Saida, K.; Bunda, K.; Ogiwara, H.; Nishimoto, K. Microcracking susceptibility in dissimilar multipass welds of Ni-base alloy 690 and low-alloy steel. Weld. Int. 2015, 29, 668-680. [CrossRef] open in new tab
  48. Sun, Y.L.; Obasi, G.; Hamelin, C.J.; Vasileiou, A.N.; Flint, T.F.; Francis, J.A.; Smith, M.C. Characterization and modelling of tempering during multi-pass welding. J. Mater. Process. Technol. 2019, 270, 118-131. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 166 times

Recommended for you

Meta Tags