Role of bead sequence in underwater welding - Publikacja - MOST Wiedzy

Wyszukiwarka

Role of bead sequence in underwater welding

Abstrakt

This paper presents examinations of the role of the bead sequence in underwater welding. Two specimens of wet welded layers made by covered electrodes with the use of normalized S355G10+N steel were welded by a reasonable bead sequence. For each specimen, metallographic macro- and micro-scopic tests were done. Then, Vickers HV10 hardness measurements were conducted for each pad weld in the welded layer. The results show that welding in the water environment carries many problems in the stability of the welding arc, which influences the properties of the welds. The effects of refining and tempering the structure in heat-affected zones of earlier laid beads was observed, which provides a reduction of hardness. The possibility of applying two techniques while welding the layer by the wet method is described. It is stated that a reasonable bead sequence can decrease the hardness in heat-affected zones up to 40 HV10. Tempering by heat from next beads can also change the microstructure in this area by tempering martensite and can decrease susceptibility to cold cracking.

Cytowania

  • 2 8

    CrossRef

  • 2 7

    Web of Science

  • 2 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 12,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Tomków J., Fydrych D., Rogalski G.: Role of bead sequence in underwater welding// Materials -Vol. 12,iss. 20 (2019), s.3372-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma12203372
Bibliografia: test
  1. Zhang, Y.; Jia, C.; Wang, J.; Zhao, B.; Wu, C. Investigation on the bubble dynamic behaviors and corresponding regulation method in underwater flux-cored arc welding. Proc. Inst. Mech. Eng. B 2019, 223, 1808-1817. [CrossRef] otwiera się w nowej karcie
  2. Sun, K.; Zeng, M.; Shi, Y.; Hu, Y.; Shen, X. Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints. J. Mater. Process. Technol. 2018, 256, 190-201. [CrossRef] otwiera się w nowej karcie
  3. Wang, J.; Sun, Q.; Teng, J.; Feng, J. Bubble evolution in ultrasonic wave-assisted underwater wet FCAW. Weld. J. 2019, 98, 150-163. otwiera się w nowej karcie
  4. Guo, N.; Du, Y.; Maksimov, S.; Feng, J.; Yin, Z.; Krazhanovskyi, D.; Fu, Y. Study of metal transfer control in underwater wet FCAW using pulsed wire feed method. Weld. World 2018, 62, 87-94. [CrossRef] otwiera się w nowej karcie
  5. Tomków, J.; Łabanowski, J.; Fydrych, D.; Rogalski, G. Cold cracking of S460N steel in water environment. Pol. Marit. Res. 2018, 25, 131-136. [CrossRef] otwiera się w nowej karcie
  6. Gao, W.B.; Wang, D.; Cheng, F.; Deng, C.; Xu, W. Underwater wet welding for HSLA steels: Chemical composition, defects, microstructure, and mechanical properties. Acta Metall. Sin. Engl. 2015, 28, 1097-1108. [CrossRef] otwiera się w nowej karcie
  7. Fu, Y.; Guo, N.; Du, Y.; Chen, H.; Xu, C.; Feng, J. Effect of metal transfer mode on spatter and arc stability in underwater flux-cored wire wet welding. J. Manuf. Process. 2018, 35, 161-168. [CrossRef] otwiera się w nowej karcie
  8. Wang, J.; Sun, Q.; Ma, J.; Teng, J.; Jin, P.; Feng, J. Investigation of acoustic radiator affecting bubble-acoustic interaction in ultrasonic wave-assisted UWW at shallow water. J. Manuf. Process. 2018, 37, 563-577. [CrossRef] otwiera się w nowej karcie
  9. Li, H.; Liu, D.; Ma, Q.; Guo, N.; Song, X.; Feng, J. Microstructure and mechanical properties of dissimilar welds between 16Mn and 304L in underwater wet welding. Sci. Technol. Weld. Join. 2018, 24, 1-7. [CrossRef] otwiera się w nowej karcie
  10. Tomków, J.; Fydrych, D.; Rogalski, G.; Łabanowski, J. Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. Metall. 2019, 55, e140. [CrossRef] otwiera się w nowej karcie
  11. Świerczyńska, A.; Fydrych, D.; Rogalski, G. Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int. J. Hydrogen Energy 2017, 42, 24532-24540. [CrossRef] otwiera się w nowej karcie
  12. Tomków, J.; Rogalski, G.; Fydrych, D.; Łabanowski, J. Improvement of S355G10+N steel -weldability in water environment by Temper Bead Welding. J. Mater. Process. Technol. 2018, 262, 372-381. [CrossRef] otwiera się w nowej karcie
  13. Tomków, J.; Rogalski, G.; Fydrych, D.; Łabanowski, J. Advantages of the application of temper bead welding technique during wet welding. Materials 2019, 12, 915. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Jia, C.; Zhang, Y.; Wu, J.; Xing, C.; Zhao, B.; Wu, C. Comprehensive analysis of spatter loss in wet FCAW considering interactions of bubbles, droplets and arc-Part 1: Measurement and improvement. J. Manuf. Process. 2019, 40, 122-127. [CrossRef] Materials 2019, 12, 3372 9 of 10 otwiera się w nowej karcie
  15. Wang, J.; Sun, Q.; Zhang, S.; Wang, C.; Wu, L.; Feng, F. Characterization of the underwater welding arc bubble through a visual sensing method. J. Mater. Process. Technol. 2018, 251, 95-108. [CrossRef] otwiera się w nowej karcie
  16. Chen, H.; Guo, N.; Huang, L.; Zhang, X.; Feng, J.; Wang, G. Effects of arc bubble behaviors and characteristics on droplet transfer in underwater wet welding using in-situ imaging method. Mater. Des. 2019, 170, 107696. [CrossRef] otwiera się w nowej karcie
  17. Wang, J.; Sun, Q.; Pan, Z.; Yang, J.; Feng, J. Effect of welding speed on bubble dynamics and process stability in mechanical constraint-assisted underwater wet welding of steel sheets. J. Mater. Process. Technol. 2019, 264, 389-401. [CrossRef] otwiera się w nowej karcie
  18. Silva, L.F.; Santos, V.R.D.; Paciornik, S.; Rizzo, F.A.; Monteiro, M.J.; Bracarense, A.Q.; Pessoa, E.C.; Vieira, L.A.; Marinho, R.R. Influence of molybdenum in metal weld properties in welding wet with oxy-rutillic electrodes. Soldag. Inspeção 2013, 18, 102-109. [CrossRef] otwiera się w nowej karcie
  19. Winarto, W.; Purnama, D.; Churniawan, I. The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates. AIP Conf. Proc. 2018, 1945, 020048. otwiera się w nowej karcie
  20. Muktepavel, V.; Murzin, V.; Karpov, V.; Kurakin, A. Research on welding and processing behavior of electrodes and features of their application in "wet" underwater arc welding. Mater. Sci. Forum 2019, 946, 913-920. [CrossRef] otwiera się w nowej karcie
  21. Guo, N.; Yang, Z.; Wang, M.; Yuan, X.; Feng, J. Microstructure and mechanical properties of an underwater wet welded dissimilar ferritic/austenitic steel joint. Strength Mater. 2015, 47, 12-18. [CrossRef] otwiera się w nowej karcie
  22. Zhang, H.T.; Dai, X.Y.; Feng, J.C.; Hu, L.L. Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld. J. 2015, 94, 8-15.
  23. Gao, W.; Wang, D.; Cheng, F.; Di, X.; Deng, C.; Xu, W. Microstructural and mechanical performance of underwater wet welded S355 steel. J. Mater. Process. Technol. 2016, 238, 333-340. [CrossRef] otwiera się w nowej karcie
  24. Yan, Y.; Liu, C.; Wang, C.; Shen, J. Mechanical properties and stress variations in multipass welded joint of low-alloy high-strength steel after layer-by-layer ultrasonic impact treatment. J. Mater. Eng. Perform. 2019, 28, 2726-2735. [CrossRef] otwiera się w nowej karcie
  25. Vargas-Arista, B.; Mendoza-Camargo, O.; Zaragoza-Rivera, I.P.; Medina-Flores, A.; Cuevas-Salgado, A.; Garfias-García, E.; García-Vázquez, F. Influence of heat input on the Charpy ductile fracture behavior of reheated HAZ in GMAW multilayer welded joints on HSLA steel using digital fractographic analysis. Rev. Metal. 2019, 55, e143. [CrossRef] otwiera się w nowej karcie
  26. Winczek, J. Modeling of temperature field during multi-pass GMAW surfacing or rebuilding of steel elements taking into account the heat of the deposit metal. Appl. Sci. 2018, 7, 6. [CrossRef] otwiera się w nowej karcie
  27. Pańcikiewicz, K. Structure and properties of welded joints of 7CrMoVTiB10-10 (T24) steel. Adv. Mater. Sci. 2018, 18, 37-47. [CrossRef] otwiera się w nowej karcie
  28. Yu, J.H.; Choi, Y.S.; Shim, D.S.; Park, S.H. Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties. Opt. Laser Technol. 2018, 106, 87-93. [CrossRef] otwiera się w nowej karcie
  29. Pandey, C.; Mahapatra, M.; Kumar, P.; Saini, N.; Thakre, J.G.; Vidyarthy, R.S.; Narang, H.K. A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch. Civ. Mech. Eng. 2018, 18, 713-722. [CrossRef] otwiera się w nowej karcie
  30. Tuz, L. Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel. Adv. Mater. Sci. 2018, 18, 34-42. [CrossRef] otwiera się w nowej karcie
  31. Kurc-Lisiecka, A.; Piwnik, J.; Lisiecki, A. Laser welding of new grade of advanced high strength steel STRENX 1100 MC. Arch. Metall. Mater. 2017, 62, 1651-1657. [CrossRef] otwiera się w nowej karcie
  32. Kik, T.; Górka, J. Numerical simulations of laser and hybrid S700MC T-joint welding. Materials 2019, 12, 516. [CrossRef] otwiera się w nowej karcie
  33. Skowrońska, B.; Chmielewski, T.; Pachla, W.; Kulczyk, M.; Skiba, J.; Presz, W. Friction weldability of UFG 316L stainless steel. Arch. Metall. Mater. 2019, 64, 1051-1058.
  34. Konovalov, S.V.; Kormyashev, V.E.; Gromov, V.E.; Ivanov, Y.F.; Kapralov, E.V.; Semin, A.P. Formation features of structure-phase states of Cr-Nb-C-V containing coatings on martensitic steel. J. Surf. Investig. 2016, 10, 1119-1124. [CrossRef] otwiera się w nowej karcie
  35. Chen, X.; Su, C.; Wang, Y.; Siddiquee, A.N.; Konovalov, S.; Jayalakshami, S.; Singh, R.A. Cold metal transfer (CMT) based wire and arc additive manufacture (WAAM) system. J. Surf. Investig. 2018, 12, 1278-1284. [CrossRef] otwiera się w nowej karcie
  36. Dehghani, A.; Aslani, F. A review on defects in steel offshore structures and developed strengthening techniques. Structures 2019, 20, 635-657. [CrossRef] otwiera się w nowej karcie
  37. Meng, X.; Chen, G.; Zhu, G.; Zhu, Y. Dynamic quantitative risk assessment of accidents inducted by leakage on offshore platforms using DEMATEL-BN. Int. J. Nav. Archit. Ocean Eng. 2019, 11, 22-32. [CrossRef] otwiera się w nowej karcie
  38. Wodtke, M.; Olszewski, A.; Wójcikowski, A. FEM calculations in analysis of steel subsea water injection flowlines designing process. Pol. Marit. Res. 2018, 25, 84-93. [CrossRef] otwiera się w nowej karcie
  39. Kolios, A.; Wang, L.; Mehmanparast, A.; Brennan, F. Determination of stress concentration factors in offshore wind welded structures through a hybrid experimental and numerical approach. Ocean Eng. 2019, 178, 38-47. [CrossRef] otwiera się w nowej karcie
  40. Oh, K.Y.; Nam, W.; Ryu, M.S.; Kim, J.Y.; Epureanu, B.I. A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renew. Sustain. Energy Rev. 2018, 88, 16-36. [CrossRef] otwiera się w nowej karcie
  41. ISO 2560-A Classification of Coated Rod Electrodes for Arc Welding of Unalloyed Steel and Fine-Grained Steel; ISO: Geneva, Switzerland, 1908. otwiera się w nowej karcie
  42. EN ISO 17637:2017 Non-Destructive Testing of Welds-Visual Testing of Fusion-Welded Joints; ISO: Geneva, Switzerland, 2017. otwiera się w nowej karcie
  43. EN ISO 9015-1:2011 Destructive Tests on Welds in Metallic Materials. Hardness Testing. Hardness Test on Arc Welded Joints; ISO: Geneva, Switzerland, 2011. otwiera się w nowej karcie
  44. EN ISO 15614-1:2017 Specification and Qualification of Welding Procedures for Metallic Materials-Welding Procedure Test-Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys; ISO: Geneva, Switzerland, 2017. otwiera się w nowej karcie
  45. Sun, Y.L.; Obasi, G.; Hamelin, C.J.; Vasileiou, A.N.; Flint, T.F.; Blakrishna, J.; Smith, M.C.; Francis, J.A. Effects of dilution on alloy content and microstructure in multi-pass steel welds. J. Mater. Process. Technol. 2019, 265, 71-86. [CrossRef] otwiera się w nowej karcie
  46. Sun, Y.L.; Hamelin, C.J.; Flint, T.F.; Vasileiou, A.N.; Francis, A.; Smith, M.C. Prediction of dilution and its impact on the metallurgical and mechanical behavior of a multipass steel weldment. J. Press. Vessel Technol. 2019, 141, 061405. [CrossRef] otwiera się w nowej karcie
  47. Saida, K.; Bunda, K.; Ogiwara, H.; Nishimoto, K. Microcracking susceptibility in dissimilar multipass welds of Ni-base alloy 690 and low-alloy steel. Weld. Int. 2015, 29, 668-680. [CrossRef] otwiera się w nowej karcie
  48. Sun, Y.L.; Obasi, G.; Hamelin, C.J.; Vasileiou, A.N.; Flint, T.F.; Francis, J.A.; Smith, M.C. Characterization and modelling of tempering during multi-pass welding. J. Mater. Process. Technol. 2019, 270, 118-131. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 71 razy

Publikacje, które mogą cię zainteresować

Meta Tagi