Salicylaldimine-based receptor as a material for iron(III) selective optical sensing - Publication - Bridge of Knowledge

Search

Salicylaldimine-based receptor as a material for iron(III) selective optical sensing

Abstract

α,α-Bis(salicylimino)-m-xylene (L) was prepared using both conventional and microwave-assisted procedure. The compound exhibits ability to colorimetric recognition of iron(III) ions in aqueous environment, what is shown by significant color change from yellow to purple. In DMSO : water (9:1 v/v) solvent system receptor creates with iron(III) cations complexes of 2:1 stoichiometry (L:Fe3+) with stability constant (log K) 7.54±0.21. Incorporation of ligand into polymeric matrix (cellulose triacetate) enables iron(III) detection in aqueous solution at pH 2.9 with detection limit 2.73×10-6 M.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 76 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY no. 346, pages 318 - 326,
ISSN: 1010-6030
Language:
English
Publication year:
2017
Bibliographic description:
Łukasik N., Wagner-Wysiecka E.: Salicylaldimine-based receptor as a material for iron(III) selective optical sensing// JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY. -Vol. 346, (2017), s.318-326
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jphotochem.2017.06.011
Bibliography: test
  1. G. Nordberg, Handbook on the Toxicology of Metals, Academic Press, New York, 2007. open in new tab
  2. I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valentine, Bioinorganic Chemistry, University Science Book, Mill Valley, CA, 1994.
  3. D. Galaris, V. Skiada, A, Barbouti, Redox signaling and cancer: the role of "labile" iron, Cancer Lett. 226 (2008) 21-29. open in new tab
  4. L. Selwyn, Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge, in: J. Ashton, D. Hallam (Eds.), Metal 2004: proceedings of the International Conference on Metal Conservation. National Museum of Australia, Canberra, 2004, pp. 294-306. open in new tab
  5. K. Wu, H. Xiao, L. Wang, G. Yin, Y. Quan, R. Wang, A rhodamine derivative as a highly sensitive chemosensor for iron(III), RSC Adv. 4 (2014) 39984-90. open in new tab
  6. P.N. Borase, P.B. Thale, S.K. Sahoo, G.S. Shankarling, An "off-on" colorimetric chemosensor for selective detection of Al 3+ , Cr 3+ and Fe 3+ : its application in molecular logic gate, Sensor Actuat. B-Chem. 215 (2015) 451-458. open in new tab
  7. G.R. You, G.J. Park, S.A. Lee, K.Y. Ryu, C. Kim, Chelate-type Schiff base acting as a colorimetric sensor for iron in aqueous solution, Sensor Actuat. B-Chem. 215 (2015) 188-195. open in new tab
  8. D. Udhayakumari, S. Saravanamoorthy, S. Velmathi, Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor, Mat. Sci. Eng. C 32 (2012) 1878-1882. open in new tab
  9. B. Fang, Y. Liang, F. Chen, Highly sensitive and selective determination of cupric ions by using N,N΄-bis(salicylidene)-o-phenylenediamine as fluorescent chemosensor and related applications, Talanta 119 (2014) 601-605. open in new tab
  10. R. Arabahmadi, S. Amani, A new fluoride ion colorimetric sensor based on azo-azomethine receptors, Supramol. Chem. 26 (2014) 321-328. open in new tab
  11. N. Lashgari, A. Badiei, G.M. Ziarani, A fluorescent sensor for Al(III) and colorimetric sensor for open in new tab
  12. Fe(III) and Fe(II) based on a novel 8-hydroxyquinoline derivative, J. Fluoresc. 26 (2016) 1885-1894.
  13. Y.W. Choi, G.J. Park, Y.J. Na, H.Y. Jo, S.A. Lee, G.R. You, C. Kim, A single Schiff base molecule for recognizing multiple ions: a fluorescent sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III), Sensor Actuat. B-Chem. 194 (2014) 343-352. open in new tab
  14. Y.S. Kim, J.J. Lee, S.Y. Lee, T.G. Jo, C. Kim, A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorimetric detection of Zn(II) in aqueous media, RSC Adv. 6 (2016) 61505-61515. open in new tab
  15. V.K. Gupta, A.K. Singh, L.K. Kumawat, N. Mergu, An easily accessible switch-on optical chemosensor for the detection of noxious metal ions Ni(II), Zn(II), Fe(III) and UO2(II), Sensor Actuat. open in new tab
  16. B-Chem. 222 (2016) 468-482.
  17. S. Ye, Q. Liang, Z. Li, S. Xu, C. Yao, A highly sensitive and selective naked-eye probe for detection of Fe 3+ based on a 2,5-bis[3-benzyl-2-methylbenzothiazole]-croconaine, Tetrahedron 73 (2017) 1350- 1357. open in new tab
  18. M. Bagher-Gholivand, A. Babakhanian, M. Mohammadi, P. Moradi, S.H. Kiaie, Novel optical bulk membrane sensor and its application for determination of iron in plant and cereal samples, J. Food Comp. Anal. 29 (2013) 144-150. open in new tab
  19. J.-H. Xu, Y.-M. Hou, Q.-J. Ma, X.-F. Wu, H.-J. Wei, A highly selective fluorescent sensor for Fe 3+ based on covalently immobilized derivative of naphthalimine, Spectrochim. Acta Mol. Biomol. Spectrosc. 112 (2013) 116-124. open in new tab
  20. A.W. Maverick, R.K. Laxman, M.A. Hawkins, D.P. Martone, F.R. Fronczek, Flexible cofacial binuclear metal complexes derived from alpha, alpha-bis(salicylimino)-m-xylene, Dalton Trans. (2005) 200-206. open in new tab
  21. M. Kyvala, I. Lukeš, program "OPIUM", http://www.natur.cuni.cz/~kyvala/opium.html
  22. A. Loupy, Microwaves in Organic Synthesis, 2nd ed. Willey-VCH Verlag GmbH& Co.KGaA, Weinheim, 2006; (b) C.O. Kappe, D. Dallinger, S.S. Murphree, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments and Protocols, Willey-VCH Verlag GmbH& Co.KGaA, Weinheim, 2009; (c) C.O. Kappe, A. Stadler, D. Dallinger, Microwaves in Organic and Medicinal Chemistry, in: R. Mannchold, H. Kubinyi, G. Folkers (Eds), Methods and Principles in Medicinal Chemistry, 2nd Ed., Vol. 52, Willey-VCH Verlag GmbH& Co.KGaA, Weinheim, 2012; (d) N. Łukasik, E. Wagner-Wysiecka, Curr. Org. Synth. 11 (2014) 592-604. open in new tab
  23. A. Khalafi-Nezhad, B. Mokhtari, M.N.S. Rad, Direct preparation of primary amides from carboxylic acids and urea using imidazole under microwave irradiation, Tetrahedron Lett. 44 (2003) 7325-7328; (b) E. Gelens, L. Smeets, L.A.J.M. Sliedregt, B.J. van Steen, Ch.G. Kruse, R. Leurs, R.V.A. open in new tab
  24. Orru, An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves, Tetrahedron Lett. 46 (2005) 3751-3754; (c) E. Wagner-Wysiecka, N. Łukasik, Anion recognition by N,N'-diarylalkanediamides, Tetrahedron Lett. 53 (2012) 6029-6034; (d) A. Grün, M. Mátyás, T. Földesi, P. Ábrányi-Balogh, L. Drahos, G. Keglevich, Microwave-assisted amidation of arylacetic acids by reaction with 2-aryl-ethylamines, Synt. Commun. 43 (2013) 1491-1498.
  25. C. Reichardt, Solvents and Solvent Efects in Organic Chemistry, 3 rd Ed., WILEY-VCH Verlag
  26. GmbH & Co. KGaA, Weinheim, 2003; (b) V.I. Minkin, A.V. Tuskanov, A.D. Dubonosov, V. A. Bren, Tautomeric Schiff bases: iono-, solvato-, thermo-, and photochromism, J. Mol. Struct. 998 (2011) 179-
  27. L. Antonov (Ed.), Tautomerism: Methods and theories, 1st Ed., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014. open in new tab
  28. N. Özdemir, S. Dayan, O. Dayan, M. Dinçer, N.Ö. Kalaycıoğlu, Experimental and molecular modeling investigation of (E)-N-{2-[(2hydroxybenzylidene)amino]phenyl}benzenesulfonamide, Mol. open in new tab
  29. Phys. 111 (2012) 707-723; (b) G. Kaştaş, Investigating the prototropic tautomerism in (E)-2-[(4- fluorophenyl) iminomethyl]-5-methoxyphenol compound for solid state and solvent media by experimental and quantum computational tools, J. Mol. Struct. 1017 (2012) 38-44; (c) A.Ö. Yıldırım, M. H. Yıldırım, Ç.A. Kaştaş, Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4- nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations, J. Mol. Str. 1127 (2017) 275-282.
  30. S.R. Salman, F.S. Kamounah, Tautomerism in 1-hydroxy-2-naphthaldehyde schiff bases: calculation of tautomeric isomers using carbon-13 NMR, Spectroscopy 17 (2003) 747-752; (b) J. open in new tab
  31. Matijević-Sosa, M. Vinković, D. Vikić-Topić, NMR Spectroscopy of 2-hydroxy-1-naphthylidene Schiff bases with chloro and hydroxy substituted aniline moiety, Croat. Chem. Acta 79 (2006) 489-495; (c) M.
  32. Flores-Leonar, N. Esturau-Escofet, J.M. Méndez-Stivalet, A. Marín-Becerra, C. Amador-Bedolla, Factors determining tautomeric equilibria in Schiff bases, J. Mol. Struct. 1006 (2011) 600-605; (d) Ö.Ö. open in new tab
  33. Güngör, Intramolecular proton transfer equilibrium in salicylidene-and naphthalene-based tetraimine Schiff bases, GUJS 30 (2017) 191-214; (e) A.Ö. Yıldırım, M.H. Yıldırım, Ç.A. Kaştaş, Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: synthesis, X-ray, FT-IR, UV- Vis, NMR and quantum chemical characterizations, J. Mol. Str. 1127 (2017) 275-282.
  34. B. Adam, E. Bill, E. Bothe, B. Goerdt, G. Haselhorst, K. Hildenbrand, A. Sokolowski, S. Steenken, T. Weyhermuller, K. Wieghardt, Phenoxyl radical complexes of gallium, scandium, iron and manganese, Chem. Eur. J. 3 (1997) 308-319. open in new tab
  35. M. Yıldız, Z. Kılıç, T. Hökelek, Intramolecular hydrogen bonding and tautomerism in Schiff bases. open in new tab
  36. Part I. Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane, J. Mol. Struct. 441 (1998) 1- 10.
  37. Z. Popović, G. Popović, D. Matković -Čalagović, V. Roje, I. Leban, On tautomerism of two 5- methoxysalicylaldimine structural isomers in the solid state: structural study of N-(o-hydroxyphenyl)- 5-methoxysalicylaldimine and N-(m-hydroxyphenyl)-5-methoxysalicylaldimine, J. Mol. Struct. 615 (2002) 23-31. open in new tab
  38. A. Nagajothi, A. Kiruthika, S. Chitra, K. Parameswari, Fe(III) complexes with Schiff base ligands: synthesis, characterization, antimicrobial studies, Res. J. Chem. Sci. 3(2) (2013) 35-43. open in new tab
  39. S.N. Kotkar, H.D. Juneja, Synthesis, characterization, and antimicrobial studies of N, O donor Schiff base polymeric complexes, J. Chem. (2013) Article ID 479343, 5 pages, http://dx.doi.org/10.1155/2013/479343. open in new tab
  40. K. Kurzak, I. Kuźniarska-Biernacka, B. Żurowska, Spectrochemical properties of cobalt(II) complexes with bidentate Schiff base in various solvents, J. Solution Chem. 28(2) (1999) 133-151. open in new tab
  41. W.J. Geary, The use of conductivity measurements in organic solvents for the characterization of coordination compounds, Coord. Chem. Rev. 7 (1971) 81-122. open in new tab
  42. N. Beyazit, B. Çatıkkas, S. Bayraktar, C. Demetgül, Synthesis, characterization and catecholase- like activity of new Schiff base metal complexes derived from visnagin: theoretical and experimental study, J. Mol. Struct. 1119 (2016) 124-132. open in new tab
  43. J. Puls, S.A. Wilson, D. Hölter, Degradation of cellulose acetate-based materials: a review, J. Polym. Environ. 19 (2011) 152-165. open in new tab
  44. IUPAC, Nomenclature, symbols, units and their usage in spectrochemical analysis-II. Data interpretation analytical chemistry division, Spectrochim. Acta B: Atom. Spectrosc. 3 (1978) 241-245. open in new tab
  45. World Health Organization, Guidelines for drinking-water quality, 4th Ed., WHO Library Cataloguing-in-Publication Data, Chain, 2011. open in new tab
Verified by:
Gdańsk University of Technology

seen 173 times

Recommended for you

Meta Tags