Salicylaldimine-based receptor as a material for iron(III) selective optical sensing - Publikacja - MOST Wiedzy

Wyszukiwarka

Salicylaldimine-based receptor as a material for iron(III) selective optical sensing

Abstrakt

α,α-Bis(salicylimino)-m-xylene (L) was prepared using both conventional and microwave-assisted procedure. The compound exhibits ability to colorimetric recognition of iron(III) ions in aqueous environment, what is shown by significant color change from yellow to purple. In DMSO : water (9:1 v/v) solvent system receptor creates with iron(III) cations complexes of 2:1 stoichiometry (L:Fe3+) with stability constant (log K) 7.54±0.21. Incorporation of ligand into polymeric matrix (cellulose triacetate) enables iron(III) detection in aqueous solution at pH 2.9 with detection limit 2.73×10-6 M.

Cytowania

  • 9

    CrossRef

  • 7

    Web of Science

  • 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 51 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY nr 346, strony 318 - 326,
ISSN: 1010-6030
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Łukasik N., Wagner-Wysiecka E.: Salicylaldimine-based receptor as a material for iron(III) selective optical sensing// JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY. -Vol. 346, (2017), s.318-326
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jphotochem.2017.06.011
Bibliografia: test
  1. G. Nordberg, Handbook on the Toxicology of Metals, Academic Press, New York, 2007. otwiera się w nowej karcie
  2. I. Bertini, H.B. Gray, S.J. Lippard, J.S. Valentine, Bioinorganic Chemistry, University Science Book, Mill Valley, CA, 1994.
  3. D. Galaris, V. Skiada, A, Barbouti, Redox signaling and cancer: the role of "labile" iron, Cancer Lett. 226 (2008) 21-29. otwiera się w nowej karcie
  4. L. Selwyn, Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge, in: J. Ashton, D. Hallam (Eds.), Metal 2004: proceedings of the International Conference on Metal Conservation. National Museum of Australia, Canberra, 2004, pp. 294-306. otwiera się w nowej karcie
  5. K. Wu, H. Xiao, L. Wang, G. Yin, Y. Quan, R. Wang, A rhodamine derivative as a highly sensitive chemosensor for iron(III), RSC Adv. 4 (2014) 39984-90. otwiera się w nowej karcie
  6. P.N. Borase, P.B. Thale, S.K. Sahoo, G.S. Shankarling, An "off-on" colorimetric chemosensor for selective detection of Al 3+ , Cr 3+ and Fe 3+ : its application in molecular logic gate, Sensor Actuat. B-Chem. 215 (2015) 451-458. otwiera się w nowej karcie
  7. G.R. You, G.J. Park, S.A. Lee, K.Y. Ryu, C. Kim, Chelate-type Schiff base acting as a colorimetric sensor for iron in aqueous solution, Sensor Actuat. B-Chem. 215 (2015) 188-195. otwiera się w nowej karcie
  8. D. Udhayakumari, S. Saravanamoorthy, S. Velmathi, Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor, Mat. Sci. Eng. C 32 (2012) 1878-1882. otwiera się w nowej karcie
  9. B. Fang, Y. Liang, F. Chen, Highly sensitive and selective determination of cupric ions by using N,N΄-bis(salicylidene)-o-phenylenediamine as fluorescent chemosensor and related applications, Talanta 119 (2014) 601-605. otwiera się w nowej karcie
  10. R. Arabahmadi, S. Amani, A new fluoride ion colorimetric sensor based on azo-azomethine receptors, Supramol. Chem. 26 (2014) 321-328. otwiera się w nowej karcie
  11. N. Lashgari, A. Badiei, G.M. Ziarani, A fluorescent sensor for Al(III) and colorimetric sensor for otwiera się w nowej karcie
  12. Fe(III) and Fe(II) based on a novel 8-hydroxyquinoline derivative, J. Fluoresc. 26 (2016) 1885-1894.
  13. Y.W. Choi, G.J. Park, Y.J. Na, H.Y. Jo, S.A. Lee, G.R. You, C. Kim, A single Schiff base molecule for recognizing multiple ions: a fluorescent sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III), Sensor Actuat. B-Chem. 194 (2014) 343-352. otwiera się w nowej karcie
  14. Y.S. Kim, J.J. Lee, S.Y. Lee, T.G. Jo, C. Kim, A highly sensitive benzimidazole-based chemosensor for the colorimetric detection of Fe(II) and Fe(III) and the fluorimetric detection of Zn(II) in aqueous media, RSC Adv. 6 (2016) 61505-61515. otwiera się w nowej karcie
  15. V.K. Gupta, A.K. Singh, L.K. Kumawat, N. Mergu, An easily accessible switch-on optical chemosensor for the detection of noxious metal ions Ni(II), Zn(II), Fe(III) and UO2(II), Sensor Actuat. otwiera się w nowej karcie
  16. B-Chem. 222 (2016) 468-482.
  17. S. Ye, Q. Liang, Z. Li, S. Xu, C. Yao, A highly sensitive and selective naked-eye probe for detection of Fe 3+ based on a 2,5-bis[3-benzyl-2-methylbenzothiazole]-croconaine, Tetrahedron 73 (2017) 1350- 1357. otwiera się w nowej karcie
  18. M. Bagher-Gholivand, A. Babakhanian, M. Mohammadi, P. Moradi, S.H. Kiaie, Novel optical bulk membrane sensor and its application for determination of iron in plant and cereal samples, J. Food Comp. Anal. 29 (2013) 144-150. otwiera się w nowej karcie
  19. J.-H. Xu, Y.-M. Hou, Q.-J. Ma, X.-F. Wu, H.-J. Wei, A highly selective fluorescent sensor for Fe 3+ based on covalently immobilized derivative of naphthalimine, Spectrochim. Acta Mol. Biomol. Spectrosc. 112 (2013) 116-124. otwiera się w nowej karcie
  20. A.W. Maverick, R.K. Laxman, M.A. Hawkins, D.P. Martone, F.R. Fronczek, Flexible cofacial binuclear metal complexes derived from alpha, alpha-bis(salicylimino)-m-xylene, Dalton Trans. (2005) 200-206. otwiera się w nowej karcie
  21. M. Kyvala, I. Lukeš, program "OPIUM", http://www.natur.cuni.cz/~kyvala/opium.html
  22. A. Loupy, Microwaves in Organic Synthesis, 2nd ed. Willey-VCH Verlag GmbH& Co.KGaA, Weinheim, 2006; (b) C.O. Kappe, D. Dallinger, S.S. Murphree, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments and Protocols, Willey-VCH Verlag GmbH& Co.KGaA, Weinheim, 2009; (c) C.O. Kappe, A. Stadler, D. Dallinger, Microwaves in Organic and Medicinal Chemistry, in: R. Mannchold, H. Kubinyi, G. Folkers (Eds), Methods and Principles in Medicinal Chemistry, 2nd Ed., Vol. 52, Willey-VCH Verlag GmbH& Co.KGaA, Weinheim, 2012; (d) N. Łukasik, E. Wagner-Wysiecka, Curr. Org. Synth. 11 (2014) 592-604. otwiera się w nowej karcie
  23. A. Khalafi-Nezhad, B. Mokhtari, M.N.S. Rad, Direct preparation of primary amides from carboxylic acids and urea using imidazole under microwave irradiation, Tetrahedron Lett. 44 (2003) 7325-7328; (b) E. Gelens, L. Smeets, L.A.J.M. Sliedregt, B.J. van Steen, Ch.G. Kruse, R. Leurs, R.V.A. otwiera się w nowej karcie
  24. Orru, An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves, Tetrahedron Lett. 46 (2005) 3751-3754; (c) E. Wagner-Wysiecka, N. Łukasik, Anion recognition by N,N'-diarylalkanediamides, Tetrahedron Lett. 53 (2012) 6029-6034; (d) A. Grün, M. Mátyás, T. Földesi, P. Ábrányi-Balogh, L. Drahos, G. Keglevich, Microwave-assisted amidation of arylacetic acids by reaction with 2-aryl-ethylamines, Synt. Commun. 43 (2013) 1491-1498.
  25. C. Reichardt, Solvents and Solvent Efects in Organic Chemistry, 3 rd Ed., WILEY-VCH Verlag
  26. GmbH & Co. KGaA, Weinheim, 2003; (b) V.I. Minkin, A.V. Tuskanov, A.D. Dubonosov, V. A. Bren, Tautomeric Schiff bases: iono-, solvato-, thermo-, and photochromism, J. Mol. Struct. 998 (2011) 179-
  27. L. Antonov (Ed.), Tautomerism: Methods and theories, 1st Ed., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014. otwiera się w nowej karcie
  28. N. Özdemir, S. Dayan, O. Dayan, M. Dinçer, N.Ö. Kalaycıoğlu, Experimental and molecular modeling investigation of (E)-N-{2-[(2hydroxybenzylidene)amino]phenyl}benzenesulfonamide, Mol. otwiera się w nowej karcie
  29. Phys. 111 (2012) 707-723; (b) G. Kaştaş, Investigating the prototropic tautomerism in (E)-2-[(4- fluorophenyl) iminomethyl]-5-methoxyphenol compound for solid state and solvent media by experimental and quantum computational tools, J. Mol. Struct. 1017 (2012) 38-44; (c) A.Ö. Yıldırım, M. H. Yıldırım, Ç.A. Kaştaş, Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4- nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations, J. Mol. Str. 1127 (2017) 275-282.
  30. S.R. Salman, F.S. Kamounah, Tautomerism in 1-hydroxy-2-naphthaldehyde schiff bases: calculation of tautomeric isomers using carbon-13 NMR, Spectroscopy 17 (2003) 747-752; (b) J. otwiera się w nowej karcie
  31. Matijević-Sosa, M. Vinković, D. Vikić-Topić, NMR Spectroscopy of 2-hydroxy-1-naphthylidene Schiff bases with chloro and hydroxy substituted aniline moiety, Croat. Chem. Acta 79 (2006) 489-495; (c) M.
  32. Flores-Leonar, N. Esturau-Escofet, J.M. Méndez-Stivalet, A. Marín-Becerra, C. Amador-Bedolla, Factors determining tautomeric equilibria in Schiff bases, J. Mol. Struct. 1006 (2011) 600-605; (d) Ö.Ö. otwiera się w nowej karcie
  33. Güngör, Intramolecular proton transfer equilibrium in salicylidene-and naphthalene-based tetraimine Schiff bases, GUJS 30 (2017) 191-214; (e) A.Ö. Yıldırım, M.H. Yıldırım, Ç.A. Kaştaş, Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: synthesis, X-ray, FT-IR, UV- Vis, NMR and quantum chemical characterizations, J. Mol. Str. 1127 (2017) 275-282.
  34. B. Adam, E. Bill, E. Bothe, B. Goerdt, G. Haselhorst, K. Hildenbrand, A. Sokolowski, S. Steenken, T. Weyhermuller, K. Wieghardt, Phenoxyl radical complexes of gallium, scandium, iron and manganese, Chem. Eur. J. 3 (1997) 308-319. otwiera się w nowej karcie
  35. M. Yıldız, Z. Kılıç, T. Hökelek, Intramolecular hydrogen bonding and tautomerism in Schiff bases. otwiera się w nowej karcie
  36. Part I. Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane, J. Mol. Struct. 441 (1998) 1- 10.
  37. Z. Popović, G. Popović, D. Matković -Čalagović, V. Roje, I. Leban, On tautomerism of two 5- methoxysalicylaldimine structural isomers in the solid state: structural study of N-(o-hydroxyphenyl)- 5-methoxysalicylaldimine and N-(m-hydroxyphenyl)-5-methoxysalicylaldimine, J. Mol. Struct. 615 (2002) 23-31. otwiera się w nowej karcie
  38. A. Nagajothi, A. Kiruthika, S. Chitra, K. Parameswari, Fe(III) complexes with Schiff base ligands: synthesis, characterization, antimicrobial studies, Res. J. Chem. Sci. 3(2) (2013) 35-43. otwiera się w nowej karcie
  39. S.N. Kotkar, H.D. Juneja, Synthesis, characterization, and antimicrobial studies of N, O donor Schiff base polymeric complexes, J. Chem. (2013) Article ID 479343, 5 pages, http://dx.doi.org/10.1155/2013/479343. otwiera się w nowej karcie
  40. K. Kurzak, I. Kuźniarska-Biernacka, B. Żurowska, Spectrochemical properties of cobalt(II) complexes with bidentate Schiff base in various solvents, J. Solution Chem. 28(2) (1999) 133-151. otwiera się w nowej karcie
  41. W.J. Geary, The use of conductivity measurements in organic solvents for the characterization of coordination compounds, Coord. Chem. Rev. 7 (1971) 81-122. otwiera się w nowej karcie
  42. N. Beyazit, B. Çatıkkas, S. Bayraktar, C. Demetgül, Synthesis, characterization and catecholase- like activity of new Schiff base metal complexes derived from visnagin: theoretical and experimental study, J. Mol. Struct. 1119 (2016) 124-132. otwiera się w nowej karcie
  43. J. Puls, S.A. Wilson, D. Hölter, Degradation of cellulose acetate-based materials: a review, J. Polym. Environ. 19 (2011) 152-165. otwiera się w nowej karcie
  44. IUPAC, Nomenclature, symbols, units and their usage in spectrochemical analysis-II. Data interpretation analytical chemistry division, Spectrochim. Acta B: Atom. Spectrosc. 3 (1978) 241-245. otwiera się w nowej karcie
  45. World Health Organization, Guidelines for drinking-water quality, 4th Ed., WHO Library Cataloguing-in-Publication Data, Chain, 2011. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 125 razy

Publikacje, które mogą cię zainteresować

Meta Tagi