Searching for Solvents with an Increased Carbon Dioxide Solubility Using Multivariate Statistics - Publication - Bridge of Knowledge

Search

Searching for Solvents with an Increased Carbon Dioxide Solubility Using Multivariate Statistics

Abstract

Ionic liquids (ILs) are used in various fields of chemistry. One of them is CO2 capture, a process that is quite well described. The solubility of CO2 in ILs can be used as a model to investigate gas absorption processes. The aim is to find the relationships between the solubility of CO2 and other variables—physicochemical properties and parameters related to greenness. In this study, 12 variables are used to describe a dataset consisting of 26 ILs and 16 molecular solvents. We used a cluster analysis, a principal component analysis, and a K-means hierarchical clustering to find the patterns in the dataset and the discriminators between the clusters of compounds. The results showed that ILs and molecular solvents form two well-separated groups, and the variables were well separated into greenness-related and physicochemical properties. Such patterns suggest that the modeling of greenness properties and of the solubility of CO2 on physicochemical properties can be difficult.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 26 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MOLECULES no. 25, pages 1 - 13,
ISSN: 1420-3049
Language:
English
Publication year:
2020
Bibliographic description:
Bystrzanowska M., Tobiszewski M., Pena-Pereira F., Simeonov V.: Searching for Solvents with an Increased Carbon Dioxide Solubility Using Multivariate Statistics// MOLECULES -Vol. 25,iss. 5 (2020), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules25051156
Bibliography: test
  1. Anastas, P.T.; Warner, J.C. Green Chemistry; Frontiers: Lausanne, Switzerland, 1998; p. 640. open in new tab
  2. Namieśnik, J. Green analytical chemistry-some remarks. J. Sep. Sci. 2001, 24, 151-153. [CrossRef] open in new tab
  3. Welch, C.J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; et al. Greening analytical chromatography. Trends Anal. Chem. 2010, 29, 667-680. [CrossRef] open in new tab
  4. Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem. 2005, 7, 267-278. [CrossRef] open in new tab
  5. Koel, M.; Kaljurand, M. Application of the principles of green chemistry in analytical chemistry. Pure Appl. Chem. 2006, 78, 1993-2002. [CrossRef] open in new tab
  6. Welton, T. Solvents and sustainable chemistry. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150502. [CrossRef] open in new tab
  7. Pena-Pereira, F.; Tobiszewski, M. Initial Considerations. In The Application of Green Solvents in Separation Processes; open in new tab
  8. Pena-Pereira, F., Tobiszewski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3-16. [CrossRef] open in new tab
  9. Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275-297. [CrossRef] open in new tab
  10. Eshetu, G.G.; Armand, M.; Ohno, H.; Scrosati, B.; Passerini, S. Ionic liquids as tailored media for the synthesis and processing of energy conversion materials. Energy Environ. Sci. 2016, 9, 49-61. [CrossRef] open in new tab
  11. Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents-solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063-1071. [CrossRef] open in new tab
  12. Bystrzanowska, M.; Pena-Pereira, F.; Marcinkowski, Ł.; Tobiszewski, M. How green are ionic liquids?-A multicriteria decision analysis approach. Ecotoxicol. Environ. Saf. 2019, 174, 455-458. [CrossRef] open in new tab
  13. Pham, T.P.T.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352-372. [CrossRef] open in new tab
  14. Coleman, D.; Gathergood, N. Biodegradation studies of ionic liquids. Chem. Soc. Rev. 2010, 39, 600-637. [CrossRef] [PubMed] open in new tab
  15. Siedlecka, E.M.; Czerwicka, M.; Neumann, J.; Stepnowski, P.; Fernándex, J.F.; Thöming, J. Ionic liquids: Methods of degradation and recovery. In Ionic Liquids: Theory, Properties, New Approaches; InTech: Rijeka, Croatia, 2011; pp. 701-722. open in new tab
  16. Matzke, M.; Thiele, K.; Müller, A.; Filser, J. Sorption and desorption of imidazolium based ionic liquids in different soil types. Chemosphere 2009, 74, 568-574. [CrossRef] [PubMed] open in new tab
  17. Stepnowski, P.; Mrozik, W.; Nichthauser, J. Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ. Sci. Technol. 2007, 41, 511-516. [CrossRef] [PubMed] open in new tab
  18. Stolte, S.; Matzke, M.; Arning, J.; Böschen, A.; Pitner, W.R.; Welz-Biermann, U.; Jastorff, B.; Ranke, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007, 9, 1170-1179. [CrossRef] open in new tab
  19. Sild, S.; Piir, G.; Neagu, D.; Maran, U. Storing and using qualitative and quantitative structure-activity relationships in the era of toxicological and chemical data expansion. Big Data Predict. Toxicol. 2019, 185-213. [CrossRef] open in new tab
  20. EPA Website. Available online: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program- interface (accessed on 30 January 2020). open in new tab
  21. Figueroa, J.D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R.D. Advances in CO 2 capture technology-the US Department of Energy's Carbon Sequestration Program. Int. J. Greenh. Gas Control 2008, 2, 9-20. [CrossRef] open in new tab
  22. Keith, D.W. Why capture CO2 from the atmosphere? Science 2009, 325, 1654-1655. [CrossRef] open in new tab
  23. Sarmad, S.; Mikkola, J.P.; Ji, X. Carbon dioxide capture with ionic liquids and deep eutectic solvents: A new generation of sorbents. ChemSusChem 2017, 10, 324-352. [CrossRef] open in new tab
  24. Yu, K.M.K.; Curcic, I.; Gabriel, J.; Tsang, S.C.E. Recent advances in CO 2 capture and utilization. ChemSusChem 2008, 1, 893-899. [CrossRef] open in new tab
  25. Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.R.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO 2 ) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112-126. [CrossRef] open in new tab
  26. Lee, B.S.; Lin, S.T. Screening of ionic liquids for CO 2 capture using the COSMO-SAC model. Chem. Eng. Sci. 2015, 121, 157-168. [CrossRef] open in new tab
  27. Privalova, E.; Rasi, S.; Mäki-Arvela, P.; Eränen, K.; Rintala, J.; Murzin, D.Y.; Mikkola, J.P. CO 2 capture from biogas: Absorbent selection. RSC Adv. 2013, 3, 2979-2994. [CrossRef] open in new tab
  28. Zhang, Y.; Ji, X.; Xie, Y.; Lu, X. Screening of conventional ionic liquids for carbon dioxide capture and separation. Appl. Energy 2016, 162, 1160-1170. [CrossRef] open in new tab
  29. Safarov, J.; Hamidova, R.; Stephan, M.; Kul, I.; Shahverdiyev, A.; Hassel, E. Carbon dioxide solubility in 1-hexyl-3-methylimidazolium bis (trifluormethylsulfonyl)imide in a wide range of temperatures and pressures. J. Phys. Chem. B 2014, 118, 6829-6838. [CrossRef] [PubMed] open in new tab
  30. Reddy, R.G. Novel applications of ionic liquids in materials processing. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2009; Volume 165, p. 012076. open in new tab
  31. Tobiszewski, M.; Namieśnik, J.; Pena-Pereira, F. A derivatisation agent selection guide. Green Chem. 2017, 19, 5911-5922. [CrossRef] open in new tab
  32. Massart, D.L.; Kaufman, L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis;
  33. Wiley Interscience: New York, NY, USA, 1983.
Verified by:
Gdańsk University of Technology

seen 111 times

Recommended for you

Meta Tags