Self-Supervised Learning to Increase the Performance of Skin Lesion Classification - Publication - Bridge of Knowledge

Search

Self-Supervised Learning to Increase the Performance of Skin Lesion Classification

Abstract

To successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study, we improve deep neural models training and increase the classification accuracy under a scarcity of data by the use of the self-supervised learning technique. Self-supervised learning allows an unlabeled dataset to be used for pretraining the network, as opposed to transfer learning that requires labeled datasets. The pretrained network can be then fine-tuned using the annotated data. Moreover, we investigated the effect of combining the self-supervised learning approach with transfer learning. It is shown that this strategy outperforms network training from scratch or with transfer learning. The tests were conducted on a very important and sensitive application (skin lesion classification), but the presented approach can be applied to a broader family of applications, especially in the medical domain where the scarcity of data is a real problem.

Citations

  • 2 4

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Cite as

Full text

download paper
downloaded 82 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Electronics no. 9,
ISSN: 2079-9292
Language:
English
Publication year:
2020
Bibliographic description:
Kwasigroch A., Grochowski M., Mikołajczyk A.: Self-Supervised Learning to Increase the Performance of Skin Lesion Classification// Electronics -Vol. 9,iss. 11 (2020), s.1930-
DOI:
Digital Object Identifier (open in new tab) 10.3390/electronics9111930
Verified by:
Gdańsk University of Technology

seen 191 times

Recommended for you

Meta Tags