Structural and spectroscopic analysis of a new family of monomeric diphosphinoboranes - Publication - Bridge of Knowledge

Search

Structural and spectroscopic analysis of a new family of monomeric diphosphinoboranes

Abstract

We present a series of amino- and aryl(diphosphino)boranes R2PB(R’’)PR’2, where R2P, R’2P = tBu2P, tBuPhP, Ph2P, Cy2P, and R’’ = iPr2N, Ph, which were obtained via the metathesis reaction of iPr2NBBr2 or PhBBr2 with selected lithium phosphides. The structures of isolated diphosphinoboranes were characterized in the solid state and in solution by means of X-ray diffraction and NMR spectroscopy, respectively. The utility of these P–B–P species as ligands for transition metal complexes was tested in the reaction with [(COD)PtMe2]. Moreover, we carried out DFT calculations to elucidate bonding interactions and philicity of the reactive centers as well as to analyze conformations of the studied species. Electronic and steric properties of substituents on P and B atoms were found to have a strong influence on the structures of the obtained compounds. Three main types of diphosphinoboranes were distinguished, based on the strength of P–B π-interaction within the molecule: (i) application of strong electron-donating substituents on P-atoms and electron-accepting phenyl groups on B atoms led to the structure with one double PvB and one single P–B bond and diverse planar and pyramidal geometry of phosphanyl groups; (ii) reduction of the donor ability of phosphanyl groups gave diphosphanylboranes with delocalized P–B–P π-interactions; (iii) introduction of amino groups with strong donor abilities on B atoms canceled P–B π-interactions and allowed compounds with two very long P–B bonds and two pyramidal phosphanyl groups to be obtained.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 30 times
Publication version
Accepted or Published Version
License
Copyright (© The Royal Society of Chemistry 2019)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
DALTON TRANSACTIONS no. 48, pages 12482 - 12495,
ISSN: 1477-9226
Language:
English
Publication year:
2019
Bibliographic description:
Ordyszewska A., Szynkiewicz N., Perzanowski E., Chojnacki J., Wiśniewska A., Grubba R.: Structural and spectroscopic analysis of a new family of monomeric diphosphinoboranes// DALTON TRANSACTIONS. -Vol. 48, iss. 33 (2019), s.12482-12495
DOI:
Digital Object Identifier (open in new tab) 10.1039/c9dt02195g
Bibliography: test
  1. 54 (m, 4H, CAr-Ho) open in new tab
  2. H NMR (tol-d8, 400 open in new tab
  3. MHz, 223 K, δ): 0.55 (d, 3 JHH= 7Hz, 6H, (CH3)2CH), 1.65 (d, 3 JHH= 12 Hz, 18H, (CH3)3C), 1.75 (d, 3 JHH= 6Hz, 6H, (CH3)2CH), 3.00 (m, 3 JHH= 7 Hz, 1H, (CH3)2CH), 4.47 (m, 3 JHH= 6 Hz, 1H, (CH3)2CH), 7.04 (m, 2H, CAr-Hp), 7.12 (m, 4H, CAr- Hm), 7.63 (t, 3 JHH= 7 Hz, 4H, CAr-Ho) open in new tab
  4. B NMR (C6D6, 128 MHz, 298 K, δ): 49.5 (broad s, (Ph2P)(tBu2P)BNiPr2) open in new tab
  5. P{ 1 H} NMR (C6D6, 162 open in new tab
  6. MHz, 298 K, δ): -5.8 (broad s, tBu2P), - 40.5 (broad s, Ph2P)
  7. P{ 1 H} NMR (tol-d8, 162 open in new tab
  8. MHz, 223 K, δ): -10.7 (s, tBu2P), -41.7 (s, Ph2P) open in new tab
  9. C{ 1 H} NMR (C6D6, 100 MHz, 298 K, δ): 20.9 (broad s, CH(CH3)2), 26.9 (broad s, CH(CH3)2), 32.6 (broad d, 2 JCP= 24Hz, C(CH3)3), 33.2 (broad s, C(CH3)3)), 50.2 (broad s, CH(CH3)2), 56.9 (broad s, CH(CH3)2), 126.9 (s, Cp), 128.2 (d, 3 JCP=6 Hz, Cm), 134.3 (d, 2 JCP= 17 Hz, Co), 139.2 (very broad d, 1 JCP≈ 24 Hz, Ci); open in new tab
  10. Elemental analysis: calculated for C26H42BNP2 (M= 441.38 g/mol): %C = 70.75%, %H= 9.59%, %N= 3.17%, found: %C= open in new tab
  11. 62%, %H= 9.53 %, %N= 3.17%;
  12. 7.13 (m, overlapped, 1H, BPh-Hp), 7.29 (t, 3 JHH= 7Hz, 2H, BPh- Hm), 7.42 (broad m, overlapped, 4H, PPh-Ho), 7.51 (d, 3 JHH= 7 open in new tab
  13. Hz, 2H, BPh-Ho)
  14. H NMR (tol-d8, 400 MHz, 223K, δ): 1.04 (broad m, overlapped, 18H, (CH3)3C), 6.93 (m, overlapped, 4H, PPh-Hm), 7.00 (m, overlapped, 2H, PPh-Hp), 7.16 (m, overlapped, 1H, BPh-Hpara), 7.33 (t, 3 JHH= 8Hz, 2H, BPh-Hm), 7.51 (m, overlapped, 6H, PPh- Ho and BPh-Ho) open in new tab
  15. B NMR (tol-d8, 128 MHz, δ): 80.7 (broad s, (tBuPhP)2BPh ) 31 P{ 1 H} NMR (tol-d8, 162 MHz, 298 K,δ): 42.7 (s, tBuPhP) 31 P{ 1 H} NMR (tol-d8, 162 MHz, 223 K,δ): 41.40 (s, tBuPhP), 41.45 (s, tBuPhP)
  16. C{ 1 H} NMR (tol-d8, 100 MHz, δ): 30.9 (m, overlapped, 3 JCP= 5Hz, (CH3)3C), 34.9 (s, (CH3)3C), 126.4 (s, BCp), 127.1 (s, BCm), 127.4 (t, 3 JCP=5Hz, PCm), 127.9 (s, PCp), 128.9 (t, J= 10 Hz, BCo), 134.5 (t, 2 JCP= 8Hz, PCo), 135.4 (weak s, PCi), 135.5 (weak s, PCi), 138.8 (t, 2 JCP= 8 Hz, PCo), 145.7 (weak broad s, BCi) Elemental analysis: calculated for C26H33BP2 (M= 418.30 open in new tab
  17. g/mol): %C= 74.65 %, %H= 7.95 %, found: %C= 74.17 %, %H= 7.91 %, overlapped, CH2 (Cy)), 2.06 (broad d, J= 13 Hz, 8H, CH2 (Cy)), 2.26 (tt, J= 2 Hz, J= 12 Hz, 4H, CH (Cy)), 7.13 (t, 3 JHH= 7 Hz, 1H, C- Hpara), 7.25 (t, 3 JHH= 7 Hz, 2H, C-Hmeta), 7.50 (d, 3 JHH= 7 Hz, 2H, C-Horto) open in new tab
  18. B NMR (C6D6, 128 MHz, δ): 71.1 (very broad s, (Cy2P)2BPh), open in new tab
  19. C{ 1 H} NMR (C6D6, 100 MHz, δ): 26.0 (s, overlapped, CH2 (Cy)), 28.2 (m, CH2 (Cy)), 34.5 (m, overlapped, CH2 (Cy)), 35.1 (m, CH (Cy), 126.7 (s, Cp), 127.1 (s, Cm), 130.3 (t, 3 JCP= 10 Hz, Co), 146.1 (Ci -on the basis of HMBC spectrum) open in new tab
  20. C{ 1 H} NMR (CDCl3, 100 MHz, δ): 21.9 (weak broad s, (CH3)2Pt), 23.0 (s, (CH3)2CH), 51.6 (broad s, (CH3)2CH), 53.4 (s, CH2Cl2), 128.2 (t, JCP=11 Hz, CAr), 129.3 (s, CAr), 129.6 (weak s, CAr), 129.8 (weak s, CAr). 134.6 (t, JCP= 10 Hz, CAr), 136.7 (weak s, CAr) Elemental analysis: calculated for C33H42BCl2NP2Pt (M= 791.44 g/mol): %C = 50.08 %, %H= 5.35 %, %N= 1.77%, found: %C= 49.30 %, %H= 5.29 %, % N= 1.73 %; open in new tab
  21. 2017/25/N/ST5/00766) for financial support. R.G., N.S. and A.W. thank the National Science Centre NCN, Poland (Grant 2016/21/B/ST5/03088) for financial support. The authors thank TASK Computational Center for access to computational resources. Notes and references
  22. P. A. Chase and D. W. Stephan, Angew. Chemie, 2008, 120, 7543-7547. open in new tab
  23. R. T. Paine and H. Nöth, Chem. Rev., 1995, 95, 343-379. open in new tab
  24. A. Amgoune, S. Ladeira, K. Miqueu and D. Bourissou, J. Am. Chem. Soc., 2012, 134, 6560-6563. open in new tab
  25. D. Dou, H. Nöth, R. T. Paine, T. Chen, E. N. Duesler and G. W. Linti, Inorg. Chem., 2002, 35, 3626-3634. open in new tab
  26. J. A. Bailey, M. F. Haddow and P. G. Pringle, Chem. Commun., 2014, 50, 1432-1434. open in new tab
  27. K. Kubo, T. Kawanaka, M. Tomioka and T. Mizuta, Organometallics, 2012, 31, 2026-2034. open in new tab
  28. J. A. Bailey and P. G. Pringle, Coord. Chem. Rev., 2015, 297- 298, 77-90. open in new tab
  29. H. V. R. Dias, D. C. Pestana, M. Petrie and P. P. Power, Phosphorus. Sulfur. Silicon Relat. Elem., 1990, 51, 87-91.
  30. P. P. Power, Angew. Chem. Int. Ed., 1990, 29, 449-460. open in new tab
  31. H. Nöth, S. Staude, M. Thomann and R. T. Paine, Chem. Ber., 1993, 126, 611-618. open in new tab
  32. P. P. Power, A. Moezzi, D. C. Pestana, M. A. Petrie, S. C. Shoner and K. M. Waggoner, Pure Appl. Chem., 1991, 63, 859-866. open in new tab
  33. G. E. Coates and J. G. Livingstone, J. Chem. Soc., 1961, 0, 1000-1008. open in new tab
  34. H. Nöth and W. Schrägle, Angew. Chem., 1962, 15, 587. open in new tab
  35. G. E. Coates and J. G. Livingstone, J. Chem. Soc., 1961, 5053-5055. open in new tab
  36. H. Nöth and S. N. Sze, Z. Naturforsch., 1978, 33b, 1313- 1317. open in new tab
  37. G. Fritz and W. Hölderich, Z. Anorg. Allg. Chem., 1977, 431, 61-75. open in new tab
  38. R. A. Bartlett, H. V. Rasika Dias and P. P. Power, Inorg. Chem., 1988, 27, 3919-3922. open in new tab
  39. D. Dou, M. Westerhausen, G. L. Wood, G. Linti, E. N. open in new tab
  40. Duesler, H. Nöth and R. T. Paine, Chem. Ber., 1993, 126, 379-397.
  41. H. H. Karsch, G. Hanika, B. Huber, K. Meindl, S. König, C. Krüger and G. Müller, J. Chem. Soc., Chem. Commun., 1989, 373-375. open in new tab
  42. M. W. Drover and J. C. Peters, Dalton Trans., 2018, 47, 3733-3738. open in new tab
  43. A. Lik, D. Kargin, S. Isenberg, Z. Kelemen, R. Pietschnig and H. Helten, Chem. Commun., 2018, 54, 2471-2474. open in new tab
  44. K. Kaniewska, A. Dragulescu-Andrasi, Ł. Ponikiewski, J. Pikies, S. A. Stoian and R. Grubba, Eur. J. Inorg. Chem., 2018, 4298-4308. open in new tab
  45. N. Szynkiewicz, Ł. Ponikiewski and R. Grubba, Dalton Trans., 2018, 47, 16885-16894. open in new tab
  46. P. Pyykkö and M. Atsumi, Chem. -A Eur. J., 2009, 15, 186- 197. open in new tab
  47. P. Pyykkö and M. Atsumi, Chem. -A Eur. J., 2009, 15, 12770-12779.
  48. D. C. Pestana and P. P. Power, Organometallics, 1992, 11, 98-103. open in new tab
  49. H. Beall and C. H. Bushweller, Chem. Rev., 1973, 73, 465- 486. open in new tab
  50. D. Imbery, A. Jaeschke and H. Friebolin, Org. Magn. Reson., 1970, 2, 271-281. open in new tab
  51. C. Brown, R. H. Cragg, T. J. Miller and D. O. Smith, J. Organomet. Chem., 1983, 244, 209-215. open in new tab
  52. D. C. Pestana and P. P. Power, J. Am. Chem. Soc., 1991, 113, 8426-8437. open in new tab
  53. T. Tanaka and N. Watanabe, Org. Magn. Reson., 1974, 6, 165-169. open in new tab
  54. U. Berg and J. Sandström, in Advances in Physical Organic Chemistry, 1989, vol. 25, pp. 1-97. open in new tab
  55. A. Lik, L. Fritze, L. Müller and H. Helten, J. Am. Chem. Soc., 2017, 139, 5692-5695. open in new tab
  56. A. Shvartsbart and A. B. Smith, III, J. Am. Chem. Soc., 2014, 136, 870-873. open in new tab
  57. J. X. Mcdermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6521-6528. open in new tab
  58. E. Costa, P. G. Pringle and M. Ravetz, Inorg. Synth., 1997, 31, 284-286. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 132 times

Recommended for you

Meta Tags