Structural and Thermo-Mechanical Properties of Poly(ε-caprolactone) Modified by Various Peroxide Initiators - Publication - Bridge of Knowledge

Search

Structural and Thermo-Mechanical Properties of Poly(ε-caprolactone) Modified by Various Peroxide Initiators

Abstract

The modification of poly(ε-caprolactone) (PCL) was successfully conducted during reactive processing in the presence of dicumyl peroxide (DCP) or di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB). The peroxide initiators were applied in the various amounts of 0.5 or 1.0 pbw (part by weight) into the PCL matrix. The effects of the initiator type and its concentration on the structure and mechanical and thermal properties of PCL were investigated. To achieve a detailed and proper explication of this phenomenon, the decomposition and melting temperatures of DCP and BIB initiators were measured by differential scanning calorimetry. The conjecture of the branching or cross-linking of PCL structure via used peroxides was studied by gel fraction content measurement. Modification in the presence of BIB in PCL was found to effectively increase gel fraction. The result showed that the cross-linking of PCL started at a low content of BIB, while PCL modified by high DCP content was only partially cross-linked or branched. PCL branching and cross-linking were found to have a significant impact on the mechanical properties of PCL. However, the effect of used initiators on poly(ε-caprolactone) properties strongly depended on their structure and content. The obtained results indicated that, for the modification towards cross-linking/branching of PCL structure by using organic peroxides, the best mechanical properties were achieved for PCL modified by 0.5 pbw BIB or 1.0 pbw DCP, while the PCL modified by 1.0 pbw BIB possessed poor mechanical properties, as it was related to over cross-linking.

Citations

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Cite as

Full text

download paper
downloaded 74 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Polymers no. 11, pages 1 - 16,
ISSN: 2073-4360
Language:
English
Publication year:
2019
Bibliographic description:
Przybysz-Romatowska M., Hejna A., Haponiuk J., Formela K.: Structural and Thermo-Mechanical Properties of Poly(ε-caprolactone) Modified by Various Peroxide Initiators// Polymers. -Vol. 11, iss. 7 (2019), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.3390/polym11071101
Bibliography: test
  1. Rydz, J.; Sikorska, W.; Kyulavska, M.; Christova, D. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 2014, 16, 564-596. [CrossRef] [PubMed] open in new tab
  2. Tabone, M.D.; Cregg, J.J.; Beckman, E.J.; Landis, A.E. Sustainability metrics: Life cycle assessment and green design in polymers. Environ. Sci. Technol. 2010, 44, 8264-8269. [CrossRef] [PubMed] open in new tab
  3. Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855-6871. [CrossRef] [PubMed] open in new tab
  4. Hou, A.L.; Qu, J.P. Super-toughened poly(lactic acid) with poly(ε-caprolactone) and ethylene- methylacrylate-glycidyl methacrylate by reactive melt blending. Polymers 2019, 11, 771. [CrossRef] [PubMed] open in new tab
  5. Wisam, H.H.; Mansor, B.A.; Emad, A.J.A.M.; Nor, A.B.I. Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites. J. Appl. Sci. 2010, 10, 97-106.
  6. Dawidziuk, K.; Simmons, H.; Kontopoulou, M.; ScottParent, J. Peroxide-initiated graft modification of thermoplastic BioPolyesters: Introduction of long-chain branching. Polymer 2018, 158, 254-261. [CrossRef] open in new tab
  7. Mangeon, C.; Renard, E.; Thevenieau, F.; Langlois, V. Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. J. Mater. Sci. Eng. C 2017, 80, 760-770. [CrossRef] [PubMed] Polymers 2019, 11, 1101 open in new tab
  8. Yang, S.L.; Wu, Z.H.; Yang, W.; Yang, M.B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer. Test. 2008, 27, 957-963. [CrossRef] open in new tab
  9. Mofokeng, J.P.; Luyt, A.S. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO 2 as nanofiller. Thermochim. Acta 2015, 613, 41-53. [CrossRef] open in new tab
  10. Ke, Y.; Zhang, X.Y.; Ramakrishna, S.; He, L.M.; Wu, G. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. J. Mater. Sci. Eng. C. 2017, 70, 1107-1119. [CrossRef] open in new tab
  11. Göttermann, S.; Standau, T.; Weinmann, S.; Altstädt, V.; Bonten, C. Effect of chemical modification on the thermal and rheological properties of polylactide. Polym. Eng. Sci. 2017, 57, 1242-1251. [CrossRef] open in new tab
  12. Niaounakis, M. Biopolymers: Processing and Products; open in new tab
  13. William Andrew/Elsevier: Kidlington, UK, 2014.
  14. Cailloux, J. Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polym. Lett. 2013, 7, 304-318. [CrossRef] open in new tab
  15. Wang, Y.; Chiao, S.M.; Hung, T.-F.; Yang, S.-Y. Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type. J. Appl. Polym. Sci. 2012, 125, 402-412. [CrossRef] open in new tab
  16. Carlson, D.; Dubois, P.; Nie, L.; Narayan, R. Free radical branching of polylactide by reactive extrusion. Polym. Eng. Sci. 1998, 38, 311-321. [CrossRef] open in new tab
  17. Liu, H.; Zhang, J. Research progress in toughening modification of poly(lactic acid). J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1051-1083. [CrossRef] open in new tab
  18. Takamura, M.; Nakamura, T.; Takahashi, T.; Koyama, K. Effect of type of peroxide on cross-linking of poly(l-lactide). Polym. Degrad. Stab. 2008, 93, 1909-1916. [CrossRef] open in new tab
  19. Meng, Q.; Heuzey, M.-C.; Carreau, P.J. Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polym. Degrad. Stab. 2012, 97, 2010-2020. [CrossRef] open in new tab
  20. Wei, L.; Mcdonald, A.G. Peroxide induced cross-linking by reactive melt processing of two biopolyesters: Poly(3-hydroxybutyrate) and poly(l-lactic acid) to improve their melting processability. J. Appl. Polym. Sci. 2015, 41724, 1-15. [CrossRef] open in new tab
  21. Jin, F.; Hyon, S.H.; Iwata, H.; Tsutsumi, S. Crosslinking of poly(l-lactic acid) by γ-irradiation. Macromol. Rapid Commun. 2002, 23, 909-912. [CrossRef] open in new tab
  22. Malinowski, R. Mechanical properties of PLA/PCL blends crosslinked by electron beam and TAIC additive. Chem. Phys. Lett. 2016, 662, 91-96. [CrossRef] open in new tab
  23. Narkis, M.; Sibony-Chaouat, S.; Siegmann, A.; Shkolnik, S.; Bell, J.P. Irradiation effects on polycaprolactone. Polymer 1985, 26, 50-54. [CrossRef] open in new tab
  24. Ai, X.; Wang, D.; Li, X.; Pan, H.; Kong, J.; Yang, H.; Zhang, H.; Dong, L. The properties of chemical cross-linked poly(lactic acid) by bis(tert-butyl dioxy isopropyl) benzene. Polym. Bull. 2018, 76, 575-594. [CrossRef] open in new tab
  25. Liu, L.; Hou, J.; Wang, L.; Zhang, J.; Duan, Y. Role of dicumyl peroxide on toughening PLLA via dynamic vulcanization role of dicumyl peroxide on toughening PLLA via dynamic vulcanization. Ind. Eng. Chem. Res. 2016, 55, 9907-9914. [CrossRef] open in new tab
  26. Rytlewski, P.;Żenkiewicz, M.; Malinowski, R. Influence of dicumyl peroxide content on thermal and mechanical properties of polylactide. Int. Polym. Process. 2011, 16, 580-586. [CrossRef] open in new tab
  27. Fei, B.; Chen, C.; Chen, S.; Peng, S.W.; Zhuang, Y.G.; An, Y.X.; Dong, L.S. Crosslinking of poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym. Int. 2004, 53, 937-943. [CrossRef] open in new tab
  28. You, J.; Lou, L.; Yu, W.; Zhou, C. The preparation and crystallization of long chain branching polylactide made by melt radicals reaction. J. Appl. Polym. Sci. 2013, 129, 1959-1970. [CrossRef] open in new tab
  29. Signori, F.; Boggioni, A.; Righetti, M.C.; Rondán, C.E.; Bronco, S.; Ciardelli, F. Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol. Mater. Eng. 2015, 300, 153-160. [CrossRef] open in new tab
  30. Sipaut, C.S.; Mansa, R.F.; Yugis, A.R.; Ibrahim, M.N.M.; Ariff, Z.M.; Abdullah, A.A. The effect of different peroxide on LDPE foam properties in the presence of polyfunctional monomers. Cell. Polym. 2012, 31, 145-164. [CrossRef] open in new tab
  31. Narkis, M.; Wallerstein, R. Crosslinking of polycaprolactone with peroxides. Polym. Commun. 1986, 27, 314-317.
  32. Di, Y.W.; Iannace, S.; Di Maio, E.; Nicolais, L. Reactively modified poly(lactic acid): Properties and foam processing. Macromol. Mater. Eng. 2005, 290, 1083. [CrossRef] open in new tab
  33. Li, B.H.; Yang, M.C. Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polym. Adv. Technol. 2006, 17, 439. [CrossRef] open in new tab
  34. Zhou, Z.F.; Huang, G.Q.; Xu, W.B.; Ren, F.M. Chain extension and branching of poly(l-lactic acid) produced by reaction with a DGEBA-based epoxy resin. Express Polym. Lett. 2007, 1, 734-739. [CrossRef] open in new tab
  35. Zhong, W.; Ge, J.; Gu, Z.; Li, W.; Chen, X.; Zang, Y.; Yang, Y. Study on biodegradable polymer materials based on poly(lactic acid). I. Chain extending of low molecular weight poly(lactic acid) with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 1999, 74, 2546-2551. [CrossRef] open in new tab
  36. Liu, J.; Lou, L.; Yu, W.; Liao, R.; Li, R.; Zhou, C. Long chain branching polylactide: Structures and properties. Polymer 2010, 51, 5186-5197. [CrossRef] open in new tab
  37. Gu, L.; Xu, Y.; Fahnhorst, G.W.; Macosko, C.W. Star vs long chain branching of poly(lactic acid) with multifunctional aziridine. J. Rheol. 2017, 61, 785-796. [CrossRef] open in new tab
  38. Kim, C.-H.; Cho, K.Y.; Park, J.-K. Grafting of glycidyl methacrylate onto polycaprolactone: Preparation and characterization. Polymer 2001, 42, 5135-5142. [CrossRef] open in new tab
  39. Yoshii, F.; Darwis, D.; Mitomo, H.; Makuuchi, K. Crosslinking of poly(ε-caprolactone) by radiation technique and its biodegradability. Radiat. Phys. Chem. 2000, 57, 417-420. [CrossRef] open in new tab
  40. Abdel-Rehim, H.A.; Yoshii, F.; Kume, T. Modification of polycaprolactone in the presence of polyfunctional monomers by radiation and its biodegradability. Polym. Degrad. Stab. 2004, 85, 689-695. [CrossRef] open in new tab
  41. Gandhi, K.; Kriz, D.; Salovey, M.; Narkis, M.; Wallerstein, R. Crosslinking of polycaprolactone in the pre-gelation region. Polym. Eng. Sci. 1988, 28, 1484-1490. [CrossRef] open in new tab
  42. Han, C.; Ran, X.; Su, X.; Zhang, K.; Liu, N. Effect of peroxide crosslinking on thermal and mechanical properties of poly(ε-caprolactone). Polym. Int. 2007, 56, 593-600. [CrossRef] open in new tab
  43. Quiles-Carrillo, L.; Montanes, N.; Sammon, C.; Balart, R.; Torres-Giner, S. Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind. Crop. Prod. 2018, 111, 878-888. [CrossRef] open in new tab
  44. Xu, Y.Q.; Qu, J.P. Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J. Appl. Polym. Sci. 2009, 112, 3185-3191. [CrossRef] open in new tab
  45. Chieng, B.W.; Ibrahim, N.A.; Then, Y.Y.; Loo, Y.Y. Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties. Molecules 2014, 19, 16024-16038. [CrossRef] [PubMed] open in new tab
  46. Quiles-Carrillo, L.; Blanes-Martínez, M.M.; Montanes, N.; Fenollar, O.; Torres-Giner, S.; Balart, R. Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. Eur. Polym. J. 2018, 98, 402-410. [CrossRef] open in new tab
  47. Montava-Jordà, S.; Quiles-Carrillo, L.; Richart, N.; Torres-Giner, S.; Montanes, N. Enhanced interfacial adhesion of polylactide/poly(ε-caprolactone)/walnut shell flour composites by reactive extrusion with maleinized linseed oil. Polymers 2019, 11, 758. [CrossRef] [PubMed] open in new tab
  48. Ferri, J.M.; Samper, M.D.; Garcia-Sanoguera, D.; Reig, M.J.; Fenollar, O.; Balart, R. Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). J. Mater. Sci. 2016, 51, 5356-5366. [CrossRef] open in new tab
  49. Garcia-Garcia, D.; Ferri, J.M.; Montanes, N.; Lopez-Martinez, J.; Balart, R. Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polym. Int. 2016, 65, 1157-1164. [CrossRef] open in new tab
  50. Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermodynamics of fusion of poly-β-propiolactone and poly--caprolactone comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972, 8, 449-463. [CrossRef] open in new tab
  51. Kruželák, J.; Sýkora, R.; Hudec, I. Vulcanization of rubber compounds with peroxide curing systems. Rubber Chem. Technol. 2017, 90, 60-88. [CrossRef] open in new tab
  52. Xie, W.; Gan, Z. Thermal degradation of star-shaped poly(ε-caprolactone). Polym. Degrad. Stab. 2009, 94, 1040-1046. [CrossRef] open in new tab
  53. Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2001, 2, 288-294. [CrossRef] [PubMed] open in new tab
  54. Vogel, C.; Siesler, H.W. Thermal degradation of poly(ε-caprolactone), poly(l-lactic acid) and their blends with poly(3-hydroxy-butyrate) studied by TGA/FT-IR spectroscopy. Macromol. Symp. 2008, 265, 183-194. [CrossRef] open in new tab
  55. Su, T.-T.; Jiang, H.; Gong, H. Thermal stability and thermal degradation kinetics of poly(ε-caprolactone). Polym. Plast. Technol. Eng. 2008, 47, 398-403. [CrossRef] open in new tab
  56. Herrera-Kao, W.A.; Loría-Bastarrachea, M.I.; Pérez-Padilla, Y.; Cauich-Rodríguez, J.V.; Vázquez-Torres, H.; Cervantes-Uc, J.M. Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polym. Bull. 2018, 75, 4191-4205. [CrossRef] open in new tab
  57. Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004, 273, 381-387. [CrossRef] [PubMed] open in new tab
  58. Unger, M.; Bogel, C.; Siesler, H.W. Molecular weight dependence of the thermal degradation of poly(ε-caprolactone): A thermogravimetric differential thermal fourier transform infrared spectroscopy study. Appl. Spectrosc. 2010, 64, 805-809. [CrossRef] [PubMed] open in new tab
  59. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 147 times

Recommended for you

Meta Tags