Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ - Publication - MOST Wiedzy

Search

Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ

Abstract

In this work, Fe-doped strontium titanate SrTi1−xFexO3−x/2−δ, for x = 0–1 (STFx), has been fabricated and studied. The structure and microstructure analysis showed that the Fe amount in SrTi1−xFexO3−x/2−δ has a great influence on the lattice parameter and microstructure, including the porosity and grain size. Oxygen nonstoichiometry studies performed by thermogravimetry at different atmospheres showed that the Fe-rich compositions (x > 0.3) exhibit higher oxygen vacancies concentration of the order of magnitude 1022–1023 cm−3. The proton uptake investigations have been done using thermogravimetry in wet conditions, and the results showed that the compositions with x < 0.5 exhibit hydrogenation redox reactions. Proton concentration at 400 °C depends on the Fe content and was estimated to be 1.0 × 10−2 mol/mol for SrTi0.9Fe0.1O2.95 and 1.8 × 10−5 mol/mol for SrTi0.5Fe0.5O2.75. Above 20 mol% of iron content, a significant drop of proton molar concentrations at 400 °C was observed. This is related to the stronger overlapping of Fe and O orbitals after reaching the percolation level of approximately 30 mol% of the iron in SrTi1−xFexO3−x/2−δ. The relation between the proton concentration and Fe dopant content has been discussed in relation to the B-site average electronegativity, oxygen nonstoichiometry, and electronic structure.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 15,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Miruszewski T., Dzierzgowski K., Winiarz P., Wachowski S., Mielewczyk-Gryń A., Gazda M.: Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ// Materials -Vol. 13,iss. 4 (2020), s.1-15
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13040965
Bibliography: test
  1. Skinner, S.J.; Kilner, J.A. Oxygen ion conductors. Mater. Today 2003, 6, 30-37. [CrossRef] open in new tab
  2. Boivin, J.C.; Mairesse, G. Recent Material Developments in Fast Oxide Ion Conductors. Chem. Mater. 1998, 10, 2870-2888. [CrossRef] open in new tab
  3. Rahman, I.Z.; Raza, M.A.; Rahman, M.A. Perovskite Based Anode Materials for Solid Oxide Fuel Cell Application: A Review. Adv. Mater. Res. 2012, 445, 497-502. [CrossRef] open in new tab
  4. Moure, C.; Peña, O. Recent Advances in Perovskites: Processing and Properties. Prog. Solid State Chem. 2015, 43, 123-148. [CrossRef] open in new tab
  5. Balachandran, U.; Eror, N.G. Electrical conductivity in strontium titanate. J. Solid State Chem. 1981, 39, 351-359. [CrossRef] open in new tab
  6. Hui, S.; Petric, A. Electrical conductivity of yttrium-doped SrTiO 3 : Influence of transition metal additives. Mater. Res. Bull. 2002, 37, 1215-1231. [CrossRef] open in new tab
  7. Li, X.; Zhao, H.; Zhou, X.; Xu, N.; Xie, Z.; Chen, N. Electrical conductivity and structural stability of La-doped SrTiO 3 with A-site deficiency as anode materials for solid oxide fuel cells. Int. J. Hydrogen Energy 2010, 35, 7913-7918. [CrossRef] open in new tab
  8. Kamecki, B.; Miruszewski, T.; Karczewski, J. Structural and electrical transport properties of Pr-doped SrTi 0.93 Co 0.07 O 3−δ a novel SOEC fuel electrode materials. J. Electroceram. 2019, 42, 31-40. [CrossRef] open in new tab
  9. Bochentyn, B.; Karczewski, J.; Miruszewski, T.; Krupa, A.; Gazda, M.; Jasinski, P.; Kusz, B. Donor-substituted SrTi 1+x O 3−δ anodes for SOFC. Solid State Ion. 2012, 225, 118-123. [CrossRef] open in new tab
  10. Blennow, P.; Hagen, A.; Hansen, K.K.; Wallenberg, L.R.; Mogensen, M. Defect and electrical transport properties of Nb-doped SrTiO 3 . Solid State Ion. 2008, 179, 2047-2058. [CrossRef] open in new tab
  11. Tufte, O.N.; Chapman, P.W. Electron Mobility in Semiconducting Strontium Titanate. Phys. Rev. 1967, 155, 796-802. [CrossRef] open in new tab
  12. Rothschild, A.; Menesklou, W.; Tuller, H.L.; Ivers-Tiffée, E. Electronic structure, defect chemistry, and transport properties of SrTi 1−x Fe x O 3−y solid solutions. Chem. Mater. 2006, 18, 3651-3659. [CrossRef] open in new tab
  13. Rothschild, A.; Litzelman, S.J.; Tuller, H.L.; Menesklou, W.; Schneider, T.; Ivers-Tiffée, E. Temperature-independent resistive oxygen sensors based on SrTi 1−x Fe x O 3−δ solid solutions. Sens. Actuators B Chem. 2005, 108, 223-230. [CrossRef] open in new tab
  14. Steinsvik, S.; Bugge, R.; Gjønnes, J.; Taftø, J.; Norby, T. The defect structure of SrTi 1−x Fe x O 3−y (x = 0-0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 1997, 58, 969-976. [CrossRef] open in new tab
  15. Maldonado, F.; Maza, L.; Stashans, A. Electronic properties of Cr-, B-doped and codoped SrTiO 3 . J. Phys. Chem. Solids 2017, 100, 1-8. [CrossRef] open in new tab
  16. Li, X.; Zhao, H.; Gao, F.; Chen, N.; Xu, N. La and Sc co-doped SrTiO 3 as novel anode materials for solid oxide fuel cells. Electrochem. Commun. 2008, 10, 1567-1570. [CrossRef] open in new tab
  17. Shin, C.J.; Yoo, H.I. Al-doped SrTiO 3 : Part II, unusual thermodynamic factor and chemical diffusivity. Solid State Ion. 2007, 178, 1089-1094. [CrossRef] open in new tab
  18. Echeverri, E.; Arnache, O. Structural and impedance analysis of Co-doped SrTiO 3 perovskite. J. Phys. Conf. Ser. 2016, 687, 012040. [CrossRef] open in new tab
  19. Yoo, K.B.; Park, B.H.; Choi, G.M. Stability and performance of SOFC with SrTiO 3 -based anode in CH 4 fuel. Solid State Ion. 2012, 225, 104-107. [CrossRef] open in new tab
  20. Vashuk, V.V.; Kokhanovskii, L.V.; Yushkevich, I.I. Electrical conductivity and oxygen stoichiometry of SrFeO 3 -δ. Inorg. Mater. 2000, 36, 79-83. [CrossRef] open in new tab
  21. Hodges, J.P.; Short, S.; Jorgensen, J.D.; Xiong, X.; Dabrowski, B.; Mini, S.M.; Kimball, C.W. Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n−1 (n=2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties. J. Solid State Chem. 2000, 151, 190-209. [CrossRef] open in new tab
  22. Bocquet, A.E.; Fujimori, A.; Mizokawa, T.; Saitoh, T.; Namatame, H.; Suga, S.; Kimizuka, N.; Takeda, Y.; Takano, M. Electronic structure of SrFe 4+ O 3 and related Fe perovskite oxides. Phys. Rev. B 1992, 45, 1561-1570. [CrossRef] [PubMed] open in new tab
  23. Patrakeev, M.V.; Leonidov, I.A.; Kozhevnikov, V.L.; Kharton, V.V. Ion-electron transport in strontium ferrites: Relationships with structural features and stability. Solid State Sci. 2004, 6, 907-913. [CrossRef] open in new tab
  24. Simner, S.P.; Shelton, J.P.; Anderson, M.D.; Stevenson, J.W. Interaction between La(Sr)FeO3 SOFC cathode and YSZ electrolyte. Solid State Ion. 2003, 161, 11-18. [CrossRef] open in new tab
  25. Brixner, L.H. Preparation and properties of the SrTi 1−x FexO 3−x2 /O x2 system. Mater. Res. Bull. 1968, 3, 299-308. [CrossRef] open in new tab
  26. Jung, W. Environmental Science Activity of SrTi 1−x Fe x O 3 Surfaces. Energy Environ. Sci. 2012, 5, 7979-7988. [CrossRef] open in new tab
  27. Widerøe, M.; Münch, W.; Larring, Y.; Norby, T. Proton and apparent hydride ion conduction in Al-substituted SrTiO 3 . Solid State Ion. 2002, 154-155, 669-677. [CrossRef] open in new tab
  28. Muñoz-García, A.B.; Pavone, M. First-Principles Design of New Electrodes for Proton-Conducting Solid-Oxide Electrochemical Cells: A-Site Doped Sr2Fe1.5Mo0.5O6-δ Perovskite. Chem. Mater. 2016, 28, 490-500. [CrossRef] open in new tab
  29. Ricote, S.; Almansoori, A.; Sanders, M.; Tong, J.; Duan, C.; Nikodemski, S.; Hayre, R.O.; Shang, M. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321-1326. [CrossRef] open in new tab
  30. Poetzsch, D.; Merkle, R.; Maier, J. Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3-δ: Transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 2015, 182, 129-143. [CrossRef] open in new tab
  31. Yu, J.H.; Lee, J.S.; Maier, J. Water incorporation in oxides: A moving boundary problem. Solid State Ion. 2010, 181, 154-162. [CrossRef] open in new tab
  32. Skubida, W.; Niemczyk, A.; Zheng, K.; Liu, X.;Świeczek, K. Crystal Structure, Hydration, and Two-Fold/Single-Fold Diffusion Kinetics in Proton-Conducting Ba 0.9 La 0.1 Zr 0.25 Sn 0.25 In 0.5 O 3−a Oxide. Crystals 2018, 8, 136. [CrossRef] open in new tab
  33. Poetzsch, D.; Merkle, R.; Maier, J. Stoichiometry variation in materials with three mobile carriers-Thermodynamics and transport kinetics exemplifi ed for protons, oxygen vacancies, and holes. Adv. Funct. Mater. 2015, 25, 1542-1557. [CrossRef] open in new tab
  34. Zohourian, R.; Merkle, R.; Raimondi, G.; Maier, J. Mixed-Conducting Perovskites as Cathode Materials for Protonic Ceramic Fuel Cells: Understanding the Trends in Proton Uptake. Adv. Funct. Mater. 2018, 28, 1801241. [CrossRef] open in new tab
  35. Fan, L.; Su, P.C. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells. J. Power Sources 2016, 306, 369-377. [CrossRef] open in new tab
  36. Strandbakke, R.; Cherepanov, V.A.; Zuev, A.Y.; Tsvetkov, D.S.; Argirusis, C.; Sourkouni, G.; Prünte, S.; Norby, T. Gd-and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ion. 2015, 278, 120-132. [CrossRef] open in new tab
  37. Han, D.; Okumura, Y.; Nose, Y.; Uda, T. Synthesis of La 1−X SrxSc 1−y Fe y O 3−δ (LSSF) and measurement of water content in LSSF, LSCF and LSC hydrated in wet artificial air at 300 • C. Solid State Ion. 2010, 181, 1601-1606. [CrossRef] open in new tab
  38. Yamazaki, Y.; Babilo, P.; Haile, S.M. Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake. Chem. Mater. 2008, 20, 6352-6357. [CrossRef] open in new tab
  39. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993, 192, 55-69. [CrossRef] open in new tab
  40. Falcón, H.; Barbero, J.A.; Alonso, J.A.; Martínez-Lope, M.J.; Fierro, J.L.G. SrFeO3-δ perovskite oxides: Chemical features and performance for methane combustion. Chem. Mater. 2002, 14, 2325-2333. [CrossRef] open in new tab
  41. Vračar, M.; Kuzmin, A.; Merkle, R.; Purans, J.; Kotomin, E.A.; Maier, J.; Mathon, O. Jahn-Teller distortion around Fe 4+ in Sr (FexTi 1−x ) O 3−δ from x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 174107. [CrossRef] open in new tab
  42. Ghaffari, M.; Liu, T.; Huang, H.; Tan, O.K.; Shannon, M. Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi (1−x) Fe x O (3−δ) . Mater. Chem. Phys. 2012, 136, 347-357. [CrossRef] open in new tab
  43. Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, 32, 751-767. [CrossRef] open in new tab
  44. Kuhn, M.; Kim, J.J.; Bishop, S.R.; Tuller, H.L. Oxygen nonstoichiometry and defect chemistry of perovskite-structured BaxSr 1−x Ti 1−y Fe y O 3−y/2+δ solid solutions. Chem. Mater. 2013, 25, 2970-2975. [CrossRef] open in new tab
  45. Holt, A.; Norby, T.; Glenne, R. Defects and transport in SrFe 1−x CO x O 3−δ . Ionics (Kiel) 1999, 5, 434-443. [CrossRef] open in new tab
  46. Pasierb, P.; Komornicki, S.; Rekas, M. Comparison of the chemical diffusion of undoped and Nb-doped SrTiO 3 . J. Phys. Chem. Solids 1999, 60, 1835-1844. [CrossRef] open in new tab
  47. Park, C.Y.; Jacobson, A.J. Electrical Conductivity and Oxygen Nonstoichiometry of La 0.2 Sr 0.8 Fe 0.55 Ti 0.45 O 3−δ . J. Electrochem. Soc. 2005, 152, J65. [CrossRef] open in new tab
  48. Stevenson, J.W. Electrochemical Properties of Mixed Conducting Perovskites La 1−x M x Co 1−y Fe y O 3−δ (M = Sr, Ba, Ca). J. Electrochem. Soc. 2006, 143, 2722. [CrossRef] open in new tab
  49. Sendilkumar, A.; Raju, K.C.J.; Babu, P.D.; Srinath, S. Positive temperature coefficient of resistance of tetragonal Ti 4+ doped nano SrFeO 3−d . J. Alloys Compd. 2013, 561, 174-179. [CrossRef] open in new tab
  50. de Ligny, D.; Richet, P. High-temperature heat capacity and thermal expansion of and perovskites of SrTiO 3 and SrZrO 3 perovskites. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 53, 3013-3022. [CrossRef] open in new tab
  51. Crawford, J.; Jacobs, P. Point Defect Energies for Strontium Titanate: A Pair-Potentials Study. J. Solid State Chem. 1999, 144, 423-429. [CrossRef] open in new tab
  52. Zohourian, R.; Merkle, R.; Maier, J. Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3-δ and comparison to protonic electrolyte materials. Solid State Ion. 2017, 299, 64-69. [CrossRef] open in new tab
  53. Zohourian, R. Mixed-Conducting Perovskites as Cathodes in Protonic Ceramic Fuel Cells: Defect Chemistry and Transport Properties. Ph.D. Thesis, Max Planck Institute for Solid State Research, Stuttgart, Germany, 2018. open in new tab
  54. Yang, L.; Liu, Z.; Wang, S.; Choi, Y.; Zuo, C.; Liu, M. A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. J. Power Sources 2010, 195, 471-474. [CrossRef] open in new tab
  55. Norby, T. Proton Conductivity in Perovskite Oxides. In Perovskite Oxide Solid Oxide Fuel Cells; open in new tab
  56. Ishihara, T., Ed.; Springer: Boston, MA, USA, 2009; pp. 217-241. [CrossRef] open in new tab
  57. Norby, T.; Larring, Y. Concentration and transport of protons in oxides. Curr. Opin. Solid State Mater. Sci. 1997, 2, 593-599. [CrossRef] open in new tab
  58. Mielewczyk-Gryń, A.; Wachowski, S.; Prześniak-Welenc, M.; Dzierzgowski, K.; Regoutz, A.; Payne, D.J.; Gazda, M. Water uptake analysis of acceptor-doped lanthanum orthoniobates. J. Therm. Anal. Calorim. 2019, 6, 225-232. [CrossRef] open in new tab
  59. Norby, T.; Widerøe, M.; Glöckner, R.; Larring, Y. Hydrogen in oxides. Dalt. Trans. 2004, 3012-3018. [CrossRef] open in new tab
  60. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry;
  61. van Benthem, K.; Elsasser, C.; French, R.H. Bulk electronic structure of Experiment and theory. J. Appl. Phys. 2011, 90, 6156-6164. [CrossRef] open in new tab
  62. Miruszewski, T.; Gdaniec, P.; Rosiński, W.; Karczewski, J.; Bochentyn, B.; Kusz, B. Structure and electrical properties of Y, Fe-based perovskite mixed conducting composites fabricated by a modi fi ed polymer precursor method. Solid State Sci. 2017, 70, 41-46. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 3 times

Recommended for you

Meta Tags