Substrate Dependence in the Formation of Au Nanoislands for Plasmonic Platform Application - Publication - Bridge of Knowledge

Search

Substrate Dependence in the Formation of Au Nanoislands for Plasmonic Platform Application

Abstract

In this work, the influence of the various substrates on Au nanoisland formation has been studied. Nanostructures were obtained via annealing of thin Au films. In order to determine nanoisland formation mechanisms, correlation between an initial film thickness and temperature of formation, shapes, and dimensions of nanostructures was examined. For the surface morphology studies, nanograin structure, and chemical composition analysis, SEM, HR TEM, and EDS measurements were performed, respectively. Morphology studies showed that the temperature at which nanostructures form varies for different substrates, which indicates high impact of the substrate material on the nanostructure formation. In the case of silicon substrate, besides the phenomenon of spinodal dewetting, the effect of eutectics on the nanostructures was additionally taken into consideration.

Citations

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 49 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PLASMONICS no. 15, pages 101 - 107,
ISSN: 1557-1955
Language:
English
Publication year:
2020
Bibliographic description:
Łapiński M., Kozioł R., Cymann A., Sadowski W., Kościelska B.: Substrate Dependence in the Formation of Au Nanoislands for Plasmonic Platform Application// PLASMONICS -Vol. 15, (2020), s.101-107
DOI:
Digital Object Identifier (open in new tab) 10.1007/s11468-019-01021-9
Bibliography: test
  1. Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanosphere. Plasmonics 11:941-951. https://doi.org/10.1007/s11468-015- 0128-7 open in new tab
  2. Yoo J, Kim J-H, Lee K, Lee S, Kim S, Park H-K, Kim S-W, Bae J, Park J-J, Choi D (2013) Dewetted gold nanoparticles on ZnO nanorods for three-dimensionally distributed plasmonic hot spots. open in new tab
  3. Scripta Mater. 69:654-657. https://doi.org/10.1016/j.scriptamat. 2013.07.024 open in new tab
  4. Khurgin JB, Boltasseva A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37:768-779. https://doi. org/10.1557/mrs.2012.173 open in new tab
  5. Zhang ZS, Yang ZJ, Liu XL, Li M, Zhou L (2010) Multiple plas- mon resonances of Au/Ag alloyed hollow nanoshells. Scripta Mater 63:1193-1196. https://doi.org/10.1016/j.scriptamat.2010.08.037 open in new tab
  6. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661-6664. https://doi.org/10.1021/jp971656q open in new tab
  7. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fun- damentals and applications. J Phys D Appl Phys 44:283001- 283021. https://doi.org/10.1088/0022-3727/45/38/389501 open in new tab
  8. Beck FJ, Mokkapati S, Catchpole KR (2010) Plasmonic light- trapping for Si solar cells using self-assembled, Ag nanoparticles. Prog Photovoltaic: Res Appl 18:500-504. https://doi.org/10.1002/ pip.1006 open in new tab
  9. Siegel J, Lyutakov O, Rybka V, Kolska Z, Svorcik V (2011) Properties of gold nanostructures sputtered on glass. Res Lett 6: 96. https://doi.org/10.1186/1556-276X-6-96 open in new tab
  10. Bahloul-Hourlier D, Perrot P (2007) Thermodynamics of the Au- Si-O system: application to the synthesis and growth of silicon- silicon dioxide nanowires. J Phase Equilib Diffus 28:150-157. https://doi.org/10.1007/s11669-007-9023-z open in new tab
  11. Ferralis N, Maboudian R, Carraro C (2008) Temperature-induced self-pinning and nanolayering of AuSi eutectic droplets. J Am Chem Soc 130:2681-2685. https://doi.org/10.1021/ja7101983 open in new tab
  12. Ferralis N, el Gabaly F, Schmid AK, Maboudian R, Carraro C (2009) Real-time observation of reactive spreading of gold on sili- con. Phys Rev Lett 103:256102. https://doi.org/10.1103/ PhysRevLett.103.256102 open in new tab
  13. Ressel B, Prince KC, Heun S, Homma Y (2003) Wetting of Si surfaces by Au-Si liquid alloys. J Appl Phys 93:3886-3892. https://doi.org/10.1063/1.1558996 open in new tab
  14. Adachi T (2002) Eutectic reaction of gold thin-films deposited on silicon surface. Surf Sci 506:305-312. https://doi.org/10.1016/ S0039-6028(02)01429-2 open in new tab
  15. Ruffino F, Romano L, Pitruzzello G, Grimaldi MG (2012) High- temperature annealing of thin Au films on Si: growth of SiO2 nano- wires or Au dendritic nanostructures. Appl Phys Lett 100:053102. https://doi.org/10.1063/1.3679614 open in new tab
  16. Schuülli TU, Daudin R, Renaud G, Vaysset A, Geaymond O, Pasturel A (2010) Substrate-enhanced supercooling in AuSi eutec- tic droplets. Nature 464:1174-1177. https://doi.org/10.1038/ nature08986 open in new tab
  17. Mitlin VS (1993) Dewetting of a solid surface: analogy with spinodal decomposition. J Colloid Interface Sci 156:491-497. https://doi.org/10.1006/jcis.1993.1142 open in new tab
  18. Ruffino F, Grimaldi MG (2015) Controlled dewetting as fabrication and patterning strategy for metal nanostructures. Phys Status Solidi A 212(8):1662-1684. https://doi.org/10.1002/pssa.201431755 open in new tab
  19. Bischof J, Scherer D, Herminghaus S, Leiderer P (1996) Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting. Phys Rev Lett 77:1536-1539. https://doi.org/10.1103/ PhysRevLett.77.1536 open in new tab
  20. Seemann R, Herminghaus S, Neto C, Schlagowski S, Podzimek D, Konrad R, Mantz H, Jacobs K (2005) Dynamics and structure for- mation in thin polymer melt films. J Phys Condens Matter 17: S267-S290. https://doi.org/10.1088/0953-8984/17/9/001 open in new tab
  21. Qi WH (2005) Size effect on melting temperature of nanosolids. Physica B 368:46-50. https://doi.org/10.1016/j.physb.2005.06.035 open in new tab
  22. Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melt- ing point depression of nanostructures: nanocalorimetric measure- ments. Phys Rev B 62:10548-10557. https://doi.org/10.1103/ PhysRevB.62.10548 open in new tab
  23. Łapiński M, Synak A, Gapska A, Bojarski P, Sadowski W, Kościelska B (2018) New plasmonic platform for enhanced lumi- nescence of valrubicin. Opt Mater 83:225-228. https://doi.org/10. 1016/j.optmat.2018.05.002 open in new tab
  24. Gapska A, Łapiński M, Syty P, Sadowski W, Sienkiewicz JE, Kościelska B (2018) Au-Si plasmonic platforms: synthesis, struc- ture and FDTD simulations. Beilstein J Nanotechnol 9:2599-2608. https://doi.org/10.3762/bjnano.9.241 open in new tab
  25. Gentili D, Foschi G, Valle F, Cavallini M, Biscarini F (2012) Applications of dewetting in micro and nanotechnology. Chem Soc Rev 41:4430-4443. https://doi.org/10.1039/c2cs35040h open in new tab
  26. Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399-434. https://doi.org/10.1146/annurev- matsci-070511-155048 open in new tab
  27. Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R (2007) Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys Rev B 75:235439. https://doi.org/10. 1103/PhysRevB.75.235439 open in new tab
  28. Ruffino F, Grimaldi MG (2014) Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films. J Mater Sci 49:5714-5729. https://doi. org/10.1007/s10853-014-8290-4 open in new tab
  29. Zhang M, Wen JE, Efremov MY, Olson EA, Zhang ZS (2012) Metastable phase formation in the Au-Si system via ultrafast nanocalorimetry. J Appl Phys 111:093516. https://doi.org/10. 1063/1.4712342 open in new tab
  30. Jany BR, Gauquelin B, Willhammar T, Nikiel M, van den Bos KH, Janas A, Szajna K, Verbeeck J, van Aert S, van Tendeloo G, Krok F (2017) Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface. Sci Rep 7: 42420. https://doi.org/10.1038/srep42420 open in new tab
  31. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. open in new tab
Sources of funding:
  • Narodowe Centrum Nauki (2017/01/X/ST5/01000)
Verified by:
Gdańsk University of Technology

seen 236 times

Recommended for you

Meta Tags