Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions - Publication - Bridge of Knowledge

Search

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

Abstract

Ag-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). SEM images show that the formation of nanostructures is influenced by the initial layer thickness as well as the temperature and the time of annealing. The Ag 3d and Ag 4d XPS spectra are characteristic of nanostructures. The quality of the nanostructures, in terms of their use as plasmonic platforms, is reflected in the UV–vis absorption spectra. The absorption spectrum is dominated by a maximum in the range of 450–500 nm associated with the plasmon resonance. As the initial layer thickness increases, an additional peak appears around 350 nm, which probably corresponds to the quadrupole resonance. For calculations leading to a better illustration of absorption, scattering and overall absorption of light in Ag nanoparticles, the Mie theory is employed. Absorbance and the distribution of the electromagnetic field around the nanostructures are calculated by finite-difference time-domain (FDTD) simulations. For calculations a novel approach based on modelling the whole sample with a realistic shape of the nanoparticles, instead of full spheres, was used. This led to a very good agreement with the experiment.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 38 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Beilstein Journal of Nanotechnology no. 11, pages 494 - 507,
ISSN: 2190-4286
Language:
English
Publication year:
2020
Bibliographic description:
Kozioł R., Łapiński M., Syty P., Koszelow D., Sadowski W., Sienkiewicz J. E., Kościelska B.: Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions// Beilstein Journal of Nanotechnology -Vol. 11, (2020), s.494-507
DOI:
Digital Object Identifier (open in new tab) 10.3762/bjnano.11.40
Bibliography: test
  1. Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B 1999, 54, 3-15. doi:10.1016/s0925-4005(98)00321-9 open in new tab
  2. Michel, D.; Xiao, F.; Alameh, K. Sens. Actuators, B 2017, 246, 258-261. doi:10.1016/j.snb.2017.02.064 open in new tab
  3. Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828-3857. doi:10.1021/cr100313v open in new tab
  4. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297. doi:10.1146/annurev.physchem.58.032806.104607 open in new tab
  5. Łapiński, M.; Synak, A.; Gapska, A.; Bojarski, P.; Sadowski, W.; Kościelska, B. Opt. Mater. 2018, 83, 225-228. doi:10.1016/j.optmat.2018.05.002 open in new tab
  6. Garcia, M. A. J. Phys. D: Appl. Phys. 2011, 44, 283001. doi:10.1088/0022-3727/44/28/283001 open in new tab
  7. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; open in new tab
  8. Springer Series in Materials Science; Springer-Verlag: Berlin Heidelberg, 1995. doi:10.1007/978-3-662-09109-8 open in new tab
  9. Kreibig, U.; Genzel, L. Surf. Sci. 1985, 156, 678-700. doi:10.1016/0039-6028(85)90239-0 open in new tab
  10. Thompson, C. V. Annu. Rev. Mater. Res. 2012, 42, 399-434. doi:10.1146/annurev-matsci-070511-155048 open in new tab
  11. Seemann, R.; Herminghaus, S.; Neto, C.; Schlagowski, S.; Podzimek, D.; Konrad, R.; Mantz, H.; Jacobs, K. open in new tab
  12. J. Phys.: Condens. Matter 2005, 17, 267-290. doi:10.1088/0953-8984/17/9/001 open in new tab
  13. Liu, W. Z.; Xu, H. Y.; Wang, C. L.; Zhang, L. X.; Zhang, C.; Sun, S. Y.; Ma, J. G.; Zhang, X. T.; Wang, J. N.; Liu, Y. C. Nanoscale 2013, 5, 8634-8639. doi:10.1039/c3nr02844e open in new tab
  14. Pryce, I. M.; Koleske, D. D.; Fischer, A. J.; Atwater, H. A. Appl. Phys. Lett. 2010, 96, 153501. doi:10.1063/1.3377900 open in new tab
  15. Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Jiang, H.; Miao, G. Adv. Mater. (Weinheim, Ger.) 2012, 24, 845-849. doi:10.1002/adma.201102585 open in new tab
  16. Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed.; Artech House: Boston, MA, U.S.A., 2000. open in new tab
  17. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, U.S.A., 1985. doi:10.1016/c2009-0-20920-2 open in new tab
  18. Green, M. A.; Keevers, M. J. Prog. Photovoltaics 1995, 3, 189-192. doi:10.1002/pip.4670030303 open in new tab
  19. Mansuripur, M. Field, Force, Energy and Momentum in Classical Electrodynamics; Bentham Science Publishers Ltd., 2011. open in new tab
  20. Moores, A.; Goettmann, F. New J. Chem. 2006, 30, 1121-1132. doi:10.1039/b604038c open in new tab
  21. Bischof, J.; Scherer, D.; Herminghaus, S.; Leiderer, P. Phys. Rev. Lett. 1996, 77, 1536-1539. doi:10.1103/physrevlett.77.1536 open in new tab
  22. Ruffino, F.; Grimaldi, M. G. J. Mater. Sci. 2014, 49, 5714-5729. doi:10.1007/s10853-014-8290-4 open in new tab
  23. Trice, J.; Thomas, D.; Favazza, C.; Sureshkumar, R.; Kalyanaraman, R. Phys. Rev. B 2007, 75, 235439. doi:10.1103/physrevb.75.235439 open in new tab
  24. Łapiński, M.; Kozioł, R.; Cymann, A.; Sadowski, W.; Kościelska, B. Plasmonics 2019, 15, 101-107. doi:10.1007/s11468-019-01021-9 open in new tab
  25. Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Phys. Rev. B 2001, 64, 235402-235410. doi:10.1103/physrevb.64.235402 open in new tab
  26. Zhou, J.; An, J.; Tang, B.; Xu, S.; Cao, Y.; Zhao, B.; Xu, W.; Chang, J.; Lombardi, J. R. Langmuir 2008, 24, 10407-10413. doi:10.1021/la800961j open in new tab
  27. Zhang, Q.; Ge, J.; Pham, T.; Goebl, J.; Hu, Y.; Lu, Z.; Yin, Y. Angew. Chem., Int. Ed. 2009, 48, 3516-3519. doi:10.1002/anie.200900545 open in new tab
  28. Gentile, A.; Ruffino, F.; Grimaldi, M. G. Nanomaterials 2016, 6, 110. doi:10.3390/nano6060110 open in new tab
  29. Wang, D.; Schaaf, P. J. Mater. Chem. 2012, 22, 5344. doi:10.1039/c2jm15727f open in new tab
  30. Khurgin, J. B.; Boltasseva, A. MRS Bull. 2012, 37, 768-779. doi:10.1557/mrs.2012.173 open in new tab
  31. Valenti, M.; Venugopal, A.; Tordera, D.; Jonsson, M. P.; Biskos, G.; Schmidt-Ott, A.; Smith, W. A. ACS Photonics 2017, 4, 1146-1152. doi:10.1021/acsphotonics.6b01048 open in new tab
  32. Seo, J. T.; Yang, Q.; Kim, W.-J.; Heo, J.; Ma, S.-M.; Austin, J.; Yun, W. S.; Jung, S. S.; Han, S. W.; Tabibi, B.; Temple, D. Opt. Lett. 2009, 34, 307-309. doi:10.1364/ol.34.000307 open in new tab
  33. Pinchuk, A.; von Plessen, G.; Kreibig, U. J. Phys. D: Appl. Phys. 2004, 37, 3133-3139. doi:10.1088/0022-3727/37/22/012 open in new tab
  34. Takagi, K.; Nair, S. V.; Saito, J.; Seto, K.; Watanabe, R.; Kobayashi, T.; Tokunaga, E. Appl. Sci. 2017, 7, 1315. doi:10.3390/app7121315 open in new tab
  35. Balamurugan, B.; Maruyama, T. J. Appl. Phys. 2007, 102, 034306. doi:10.1063/1.2767837 open in new tab
  36. Oh, H.; Pyatenko, A.; Lee, M. Appl. Surf. Sci. 2019, 475, 740-747. doi:10.1016/j.apsusc.2019.01.055 open in new tab
  37. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668-677. doi:10.1021/jp026731y open in new tab
  38. Tsuji, M.; Nishizawa, Y.; Matsumoto, K.; Miyamae, N.; Tsuji, T.; Zhang, X. Colloids Surf., A 2007, 293, 185-194. doi:10.1016/j.colsurfa.2006.07.027 open in new tab
  39. Bhui, D. K.; Bar, H.; Sarkar, P.; Sahoo, G. P.; De, S. P.; Misra, A. J. Mol. Liq. 2009, 145, 33-37. doi:10.1016/j.molliq.2008.11.014 open in new tab
  40. Liu, X.; Li, D.; Sun, X.; Li, Z.; Song, H.; Jiang, H.; Chen, Y. Sci. Rep. 2015, 5, 12555. doi:10.1038/srep12555 open in new tab
  41. Kreibig, U.; Zacharias, P. Z. Phys. 1970, 231, 128-143. doi:10.1007/bf01392504 open in new tab
  42. Evanoff, D. D.; Chumanov, G. J. Phys. Chem. B 2004, 108, 13948-13956. doi:10.1021/jp047565s open in new tab
  43. License and Terms open in new tab
Verified by:
Gdańsk University of Technology

seen 219 times

Recommended for you

Meta Tags