Abstract
Plasmonic platforms based on Au nanostructures have been successfully synthesized by directional solidification of a eutectic from Au and the substrate. In order to determine homogeneous shape and space distribution, the influence of annealing conditions and the initial thickness of the Au film on the nanostructures was analyzed. For the surface morphology studies, SEM and AFM measurements were performed. The structure of platforms was investigated using XRD and XPS methods. Structural investigations confirmed, that nanostructures consist of metallic Au, growing along the [111] direction. The most homogeneous seems to be the platform obtained by solidification of a 2.8 nm Au film, annealed at 550 °C for 15 min. This sample was subsequently chosen for theoretical calculations. Simulations of electromagnetic field propagation through the produced samples were performed using the finite-difference time domain (FDTD) method. The calculated absorbance, as a result of the FDTD simulation shows a quite good agreement with experimental data obtained in the UV–vis range.
Citations
-
1 4
CrossRef
-
0
Web of Science
-
1 6
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Beilstein Journal of Nanotechnology
no. 9,
pages 2599 - 2608,
ISSN: 2190-4286 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Gapska A., Łapiński M., Syty P., Sadowski W., Sienkiewicz J., Kościelska B.: Au–Si plasmonic platforms: synthesis, structure and FDTD simulations// Beilstein Journal of Nanotechnology. -Vol. 9, (2018), s.2599-2608
- DOI:
- Digital Object Identifier (open in new tab) 10.3762/bjnano.9.241
- Verified by:
- Gdańsk University of Technology
seen 247 times