Au–Si plasmonic platforms: synthesis, structure and FDTD simulations - Publication - Bridge of Knowledge

Search

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

Abstract

Plasmonic platforms based on Au nanostructures have been successfully synthesized by directional solidification of a eutectic from Au and the substrate. In order to determine homogeneous shape and space distribution, the influence of annealing conditions and the initial thickness of the Au film on the nanostructures was analyzed. For the surface morphology studies, SEM and AFM measurements were performed. The structure of platforms was investigated using XRD and XPS methods. Structural investigations confirmed, that nanostructures consist of metallic Au, growing along the [111] direction. The most homogeneous seems to be the platform obtained by solidification of a 2.8 nm Au film, annealed at 550 °C for 15 min. This sample was subsequently chosen for theoretical calculations. Simulations of electromagnetic field propagation through the produced samples were performed using the finite-difference time domain (FDTD) method. The calculated absorbance, as a result of the FDTD simulation shows a quite good agreement with experimental data obtained in the UV–vis range.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 37 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Beilstein Journal of Nanotechnology no. 9, pages 2599 - 2608,
ISSN: 2190-4286
Language:
English
Publication year:
2018
Bibliographic description:
Gapska A., Łapiński M., Syty P., Sadowski W., Sienkiewicz J., Kościelska B.: Au–Si plasmonic platforms: synthesis, structure and FDTD simulations// Beilstein Journal of Nanotechnology. -Vol. 9, (2018), s.2599-2608
DOI:
Digital Object Identifier (open in new tab) 10.3762/bjnano.9.241
Bibliography: test
  1. Bahloul-Hourlier, D.; Perrot, P. J. Phase Equilib. Diffus. 2007, 28, 150-157. doi:10.1007/s11669-007-9023-z open in new tab
  2. Ferralis, N.; Maboudian, R.; Carraro, C. J. Am. Chem. Soc. 2008, 130, 2681-2685. doi:10.1021/ja7101983 open in new tab
  3. Ferralis, N.; Gabaly, F. E.; Schmid, A. K.; Maboudian, R.; Carraro, C. Phys. Rev. Lett. 2009, 103, 256102. doi:10.1103/physrevlett.103.256102 open in new tab
  4. Ressel, B.; Prince, K. C.; Heun, S.; Homma, Y. J. Appl. Phys. 2003, 93, 3886-3892. doi:10.1063/1.1558996 open in new tab
  5. Adachi, T. Surf. Sci. 2002, 506, 305-312. doi:10.1016/s0039-6028(02)01429-2 open in new tab
  6. Ruffino, F.; Romano, L.; Pitruzzello, G.; Grimaldi, M. G. Appl. Phys. Lett. 2012, 100, 053102. doi:10.1063/1.3679614 open in new tab
  7. Yu, W.; Yang, X.; Liu, Y.; Mittra, R. Electromagnetic Simulation Techniques Based on the FDTD Method;
  8. Wiley & Sons: New Jersey, NJ, U.S.A., 2009.
  9. Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed.; Artech House: Boston, MA, U.S.A., 2000. open in new tab
  10. Yee, K. IEEE Trans. Antennas Propag. 1966, 14, 302-307. doi:10.1109/tap.1966.1138693 open in new tab
  11. Lopata, K.; Neuhauser, D. J. Chem. Phys. 2009, 131, 014701. doi:10.1063/1.3167407 open in new tab
  12. Thompson, C. V. Annu. Rev. Mater. Res. 2012, 42, 399-434. doi:10.1146/annurev-matsci-070511-155048 open in new tab
  13. Gromov, D. G.; Gavrilov, S. A. Heterogeneous Melting in Low-Dimensional Systems and Accompanying Surface Effects. In Thermodynamics; Piraján-Moreno, J. C., Ed.; IntechOpen: Rijeka, Croatia, 2011; pp 157-190. doi:10.5772/21429 open in new tab
  14. Bischof, J.; Scherer, D.; Herminghaus, S.; Leiderer, P. Phys. Rev. Lett. 1996, 77, 1536-1539. doi:10.1103/physrevlett.77.1536 open in new tab
  15. Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R. open in new tab
  16. J. Vac. Sci. Technol., A 2005, 23, 1152-1161. doi:10.1116/1.1861943 open in new tab
  17. Müller, C. M.; Spolenak, R. Acta Mater. 2010, 58, 6035-6045. doi:10.1016/j.actamat.2010.07.021 open in new tab
  18. Manuela Müller, C.; Spolenak, R. J. Appl. Phys. 2013, 113, 094301. doi:10.1063/1.4794028 open in new tab
  19. Tesler, A. B.; Maoz, B. M.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. J. Phys. Chem. C 2013, 117, 11337-11346. doi:10.1021/jp400895z open in new tab
  20. Ruffino, F.; Grimaldi, M. G. J. Mater. Sci. 2014, 49, 5714-5729. doi:10.1007/s10853-014-8290-4 open in new tab
  21. Jany, B. R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K. H. W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F. Sci. Rep. 2017, 7, 42420. doi:10.1038/srep42420 open in new tab
  22. Schülli, T. U.; Daudin, R.; Renaud, G.; Vaysset, A.; Geaymond, O.; Pasturel, A. Nature 2010, 464, 1174-1177. doi:10.1038/nature08986 open in new tab
  23. Zhang, M.; Wen, J. G.; Efremov, M. Y.; Olson, E. A.; Zhang, Z. S.; Hu, L.; de la Rama, L. P.; Kummamuru, R.; Kavanagh, K. L.; Ma, Z.; Allen, L. H. J. Appl. Phys. 2012, 111, 093516. doi:10.1063/1.4712342 open in new tab
  24. Kim, H. C.; Theodore, N. D.; Alford, T. L. J. Appl. Phys. 2004, 95, 5180-5188. doi:10.1063/1.1682685 open in new tab
  25. Chenakin, S. P.; Kruse, N. Phys. Chem. Chem. Phys. 2016, 18, 22778-22782. doi:10.1039/c6cp03362h open in new tab
  26. Čechal, J.; Polčák, J.; Šikola, T. J. Phys. Chem. C 2014, 118, 17549-17555. doi:10.1021/jp5031703 open in new tab
  27. Shpyrko, O. G.; Streitel, R.; Balagurusamy, V. S. K.; Grigoriev, A. Y.; Deutsch, M.; Ocko, B. M.; Meron, M.; Lin, B.; Pershan, P. S. Science 2006, 313, 77-80. doi:10.1126/science.1128314 open in new tab
  28. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, U.S.A., 1985. doi:10.1016/c2009-0-20920-2 open in new tab
  29. Green, M. A.; Keevers, M. J. Prog. Photovoltaics 1995, 3, 189-192. doi:10.1002/pip.4670030303 open in new tab
  30. Mansuripur, M. Field, Force, Energy and Momentum in Classical Electrodynamics; Bentham: Sharjah, United Arab Emirates, 2012. doi:10.2174/97816080525301110101 open in new tab
  31. Rack, P. D.; Guan, Y.; Fowlkes, J. D.; Melechko, A. V.; Simpson, M. L. Appl. Phys. Lett. 2008, 92, 223108. doi:10.1063/1.2939436 open in new tab
  32. Favazza, C.; Trice, J.; Krishna, H.; Kalyanaraman, R.; Sureshkumar, R. Appl. Phys. Lett. 2006, 88, 153118. doi:10.1063/1.2195113 open in new tab
  33. Trice, J.; Thomas, D.; Favazza, C.; Sureshkumar, R.; Kalyanaraman, R. Phys. Rev. B 2007, 75, 235439. doi:10.1103/physrevb.75.235439 open in new tab
  34. Ruffino, F.; Carria, E.; Kimiagar, S.; Crupi, I.; Simone, F.; Grimaldi, M. G. Sci. Adv. Mater. 2012, 4, 708-718. doi:10.1166/sam.2012.1342 open in new tab
  35. 33. Ruffino, F.; Pugliara, A.; Carria, E.; Romano, L.; Bongiorno, C.; Spinella, C.; Grimaldi, M. G. Nanotechnology 2012, 23, 045601. doi:10.1088/0957-4484/23/4/045601 open in new tab
  36. License and Terms open in new tab
Verified by:
Gdańsk University of Technology

seen 200 times

Recommended for you

Meta Tags