Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid - Publication - MOST Wiedzy

Search

Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid

Abstract

The series of 16 novel amino acid and peptide mycophenolic acid (MPA) derivatives was obtained as potential antibacterial agents. Coupling of MPA with respective amines was optimized with condensing reagents such as EDCI/DMAP and T3P/TEA. Amino acid analogs were received both as methyl esters and also with the free carboxylic group. The biological activity of the products was tested on five references bacterial strains: Klebsiella pneumoniae ATCC 700603 (ESBL), Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus MRSA ATCC 43300, Staphylococcus aureus MSSA ATCC 25923. Peptide derivatives proved to be the most versatile ones, their MIC values relative to most strains was lower than MPA alone. It has been noted that the activity of amino acid derivatives depends on the configuration at the chiral center in the amino acid unit and methyl esters indicated better antimicrobial activity than analogs with free carboxylic group.

Citations

  • 9

    CrossRef

  • 9

    Web of Science

  • 1 0

    Scopus

Cite as

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY no. 143, pages 646 - 655,
ISSN: 0223-5234
Language:
English
Publication year:
2018
Bibliographic description:
Siebert A., Wysocka M., Krawczyk B., Cholewiński G., Rachoń J.: Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid// EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. -Vol. 143, (2018), s.646-655
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ejmech.2017.11.094
Bibliography: test
  1. B. Gosio, Ricerche batteriologiche e chimiche sulle alterazoni del mais, Riv. d'Igiene Sanita Publica Ann. 7 (1896) 825e868.
  2. F. Ardestani, S.S. Fatemi, B. Yakhchali, S.M. Hosseyni, G. Najafpour, Evaluation of mycophenolic acid production by Penicillium bervicompactum MUCL 19011 in batch and continuous submerged cultures, Biochem. Eng. J. 50 (2010) 99e103. open in new tab
  3. D. Iwaszkiewicz-Grze s, G. Cholewi nski, A. Kot-Wasik, P. Trzonkowski, K. Dzierzbicka, Synthesis and biological activity of mycophenolic acid-amino acid derivatives, Eur. J. Med. Chem. 69 (2013) 863e871. open in new tab
  4. K. Silverman, M. Pomeranz, G. Pak, K. Washenik, J.L. Shupack, Rediscovering mycophenolic acid: a review of its mechanism, side effects, and potential uses, J. Am. Acad. Dermatol 37 (1997) 445e449.
  5. L. Zhang, A. Demain, Natural Products: Drug Discovery and Therapeutic Medicine, vol. 14, Humana Press, Totowa, N.J., 2005. open in new tab
  6. D. Taylor, R. Ensley, S. Olsen, D. Dunn, D. Renlund, Mycophenolate mofetil (RS- 61443): preclinical, clinical, and three-year experience in heart trans- plantation, J. Heart Lung Transpl. 13 (1994) 571e582.
  7. M.D. Sintchak, E. Nimmesgern, The structure of inosine 5'-monophosphate dehydrogenase and the disgn of novel inhibitors, Immunopharmocol 47 (2000) 163e184. open in new tab
  8. G. Cholewi nski, D. Iwaszkiewicz-Grze s, M. Prejs, A. Głowacka, K. Dzierzbicka, Synthesis of the inosine 5'-monophosphate dehydrogenase (IMPDH) In- hibitors, J. Enzyme Inhib. Med. Chem. 30 (2015) 550e563. open in new tab
  9. B. Kaplan, Mycophenolic acid trough level monitoring in solid organ trans- plant recipients treated with mycophenolate mofetil: association with clinical outcomes, Curr. Med. Res. Opin. 22 (2006) 2355e2364. open in new tab
  10. L. Ghio, M. Ferraresso, G. Zacchelloc, L. Murere, F. Ginevrid, M. Belingheria, L. Peruzzie, F. Zanonf, F. Perfumod, L. Berardinellib, S. Tirelling, L.D. Strologoh, I. Fontanai, U. Valentei, M. Carilloj, A. Edefontia, Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant re- cipients. The role of post-transplant clinical and therapeutic variables, Clin. Transpl. 23 (2009) 264e270. open in new tab
  11. J. Jablecki, L. Kaczmarzyk, D. Patrzałek, A. Domanasiewicz, Z. Boraty nska, First Polish forearm transplantation: report after 17 months, Transpl. Proc. 41 (2009) 549e553. open in new tab
  12. T. Huff, H. Kuball, T. Anke, 7-chloro-4,6-dimethoxy-1(3H)-isobenzofuranone and basidalin: antibiotic secondary metabolites from leucoagaricus carneifolia gillet (basidiomycetes), Z. Naturforsch. C 49 (1994) 407e410. open in new tab
  13. R. Nicoletti, M. Stefano, A. Trinocone, F. Marziano, Antagonism against Rhizoctonia Solani and fungitoxic metanolite production by some pennicil- lium isolates, Mycopathologia 158 (2004) 465e474. open in new tab
  14. M. Diamond, M. Zachariah, E. Harris, Mycophenolic acid inhibits Dengue virus infection by preventing replication, Virology 304 (2002) 211e221. open in new tab
  15. C. Robertson, L. Hermann, K. Coombs, Mycophenolic acid inhibits avian reovirus replication, Antivir. Res. 64 (2004) 55e61. open in new tab
  16. K.W. Cheng, S.Ch Cheng, W.Y. Chen, M.H. Lin, S.J. Chuang, I.H. Cheng, ChY. Sun, ChY. Chou, Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus, Antivir. Res. 115 (2015) 9e16. open in new tab
  17. Y. Yin, Y. Wang, W. Dang, L. Xu, J. Su, X. Zhou, W. Wang, K. Felczak, L. Laan, K. Pankiewicz, A. Eijk, M. Bojvelds, D. Sprengers, H. Jonge, M. Koopmans, H. Metselaar, M. Peppelenbosch, Q. Pan, Mycophenolic acid potently inhibits rotavirus infection with a high barier to sesistance development, Antivir. Res. 133 (2016) 41e49. open in new tab
  18. S. Mitsuhashi, J. Takenaka, K. Iwamori, N. Nakajima, M. Ubukata, Structure- activity relationships for inhibition of inosine monophosphate dehydrogenase and differentiation induction of K562 cells among the mycophenolic acid derivatives, Bioorg. Med. Chem. 18 (2010) 8106e8111. open in new tab
  19. K. Felczak, R. Vince, K.W. Pankiewicz, NAD-based inhibitors with anticancer potential, Bioorg. Med. Chem. Lett. 24 (2014) 332e336. open in new tab
  20. K.W. Pankiewicz, K.B. Lesiak-Watanabe, K.A. Watanabe, S.E. Patterson, H.N. Jayaram, J.A. Yalowitz, M.D. Miller, M. Seidman, A. Majumdar, G. Prehna, B.M. Goldstein, Novel mycophenolic adeninę bis(phosphonate) analogues as potential differentiation agents against human leukemia, J. Med. Chem. 45 (2002) 703e712. open in new tab
  21. K.E. Jung, Y.J. Lee, Y.H. Ryu, J.E. Kim, H.S. Kim, B.J. Kim, H. Kang, Y.M. Park, Effects of topically applied rapamycin and mycophenolic acid od TNCB- induced atopic dermatitis-like lesions in NC/Nga mice, Int. Immunopharma- col. 26 (2015) 432e438. open in new tab
  22. D.F. Jones, R.H. Moore, G.C. Crawley, Microbial modifications of mycophenolic acid, J. Chem. Soc. C (1970) 1725e1737. open in new tab
  23. D.F. Jones, S.D. Mills, Preparation and antitumor properties of analogs and derivatives of mycophenolic acid, J. Med. Chem. 14 (1971) 305e311. open in new tab
  24. S. Suzuki, S. Takaku, T. Mori, Antitumor activity of derivatives of mycophenolic acid, J. Antibiot. 3 (1976) 275e285. open in new tab
  25. K.M. Lassen, M.M. Joulli e, Total synthesis of Lys3 tamandarin M: a potential affinity ligand, Org. Lett. 12 (2010) 5306e5309. open in new tab
  26. H. Wang, A. Ganesan, Total synthesis of the fumiquinazoline alkaloids: sol- idphase studies, J. Comb. Chem. 2 (2000) 186e194. open in new tab
  27. H. Wang, A. Ganesan, Total synthesis of the quinazoline alkaloids (-)-fumi- quinazoline G and (-)-fiscalin B, J. Org. Chem. 63 (1998) 2432e2433. open in new tab
  28. J. Dunetz, Y. Xiang, A. Baldwin, J. Ringling, General and scalable amide bond formation with epimerization-prone substrates using T3P and pyridine, Org. Lett. 13 (2011) 5048e5051. open in new tab
  29. G. Nagendra, C. Madgu, T. Vishwanatha, V. Sureshbabu, An expedient route for the reduction of carboxylic acid to alcohols employing 1-propanephosphonic acid cyclic anhydride as acid activator, Tetrahedron Lett. 53 (2012) 5059e5063. open in new tab
  30. A. Siebert, G. Cholewi nski, D. Garwoli nska, A. Olejnik, J. Racho n, J. Chojnacki, The synthesis and structure of a potential immunosuppressant: N-mycophe- noyl malonic acid dimethyl ester, J. Mol. Struct. 1151 (2018) 218e222. open in new tab
  31. K. Dzierzbicka, P. Trzonkowski, P. Sewerynek, A. My sliwski, Synthesis and cytotoxic activity of conjugates of muramyl and normuramyl dipeptides with batracylin derivatives, J. Med. Chem. 46 (2003) 978e986. open in new tab
  32. K. Dzierzbicka, P. Trzonkowski, J. Bociewicz, E. Szmit, A. My sliwski, Biological activity of conjugates of muramyl dipeptides with batracylin derivatives, Int. Immunopharmacol. 5 (2005) 241e251.
  33. G. Mezo, M. Szekerke, G. Sarmay, J. Gergely, Synthesis and functional studies of tuftsin analogs containing isopeptide bond, Peptides 11 (1989) 405e415. open in new tab
  34. K. Dzierzbicka, Synthesis of conjugates of muramyl dipeptide and nor- muramyl dipeptide with retro-tuftsin (Arg-Pro-Lys-ThrOMe) as potential immunostimulants, Pol. J. Chem. 78 (2004) 409e416.
  35. Post-print of: Siebert A., Wysocka M., Krawczyk B., Cholewiński G., Rachoń J.: Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. Vol. 143, (2018), p. 646-655. DOI: 10.1016/j.ejmech.2017.11.094 open in new tab
  36. K. Dzierzbicka, P. Sowi nski, A.M. Kołodziejczyk, Synthesis of analogues of anthraquinones linked to tuftsin or retro-tuftsin residues as potential topo- isomerase inhibitors, J. Pept. Sci. 12 (2006) 670e678. open in new tab
  37. K. Dzierzbicka, A. Wardowska, P. Trzonkowski, Recent developments in the synthesis and biological activity of muramylpeptides, Curr. Med. Chem. 18 (2011) 2438e2451. open in new tab
  38. K. Dzierzbicka, A. Wardowska, M. Rogalska, P. Trzonkowski, New conjugates of muramyl dipeptide and nor-muramyl dipeptide linked to tuftsin and retro- tuftsin derivatives significantly influence their biological activity, Pharmacol. Rep. 64 (2012) 217e223.
  39. I.Z. Siemion, A. Kluczyk, Tuftsin: on the 30-year anniversary of Victor Najjar's discovery, Peptides 20 (1999) 645e674. open in new tab
  40. Z.S. Herman, Z. Stachura, Ł. Opielka, Z. Siemion, E. Nawrocka, Experientia 37 (1981) 76e77. open in new tab
  41. Z. Siemion, A. Kluczyk, M. Cebrat, The peptide molecular links between the central nervous and the immune systems, Amino Acids 29 (2005) 161e176. open in new tab
  42. A. Paradowski, M. R ozga, E. Nawrocka, I.Z. Siemion, Arch. Immunol. Ther. Exp. 39 (1991) 159e164. open in new tab
  43. A. Kołodziejczyk, Naturalne Zwią zki Organiczne, PWN, Warszawa, 2006.
  44. J. Campbell, High-throughput assessment of bacterial growth inhibition by optical density measurements, Curr. Protoc. Chem. Biol. 3 (2011), 100115. open in new tab
  45. S. Kolarevic, et al., Optimisation оf the microdilution method for detection of minimum inhibitory concentration values in selected bacteria, Bot. Serb 40 (2016) 29e36. open in new tab
  46. M. Elshikh, S. Ahmed, S. Funston, P. Dunlop, M. McGaw, R. Marchant, et al., Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants, Biotechnol. Lett. 38 (2016) 1015e1019. open in new tab
  47. The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters, 2017, Version 7.1. http://www.eucast.org. open in new tab
  48. Z. Feng, B. Xu, Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches, Biomol. Concepts 7 (2016) 179e187. open in new tab
  49. R. Leclercq, R. Canton, D.F.J. Brown, et al., EUCAST expert rules in antimicrobial susceptibility testing, Clin. Microbiol. Infect. 19 (2013) 141e160. open in new tab
  50. J. O'Brien, I. Wilson, T. Orton, F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur. J. Biochem. 267 (2000) 5421e5426. open in new tab
  51. Post-print of: Siebert A., Wysocka M., Krawczyk B., Cholewiński G., Rachoń J.: Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. Vol. 143, (2018), p. 646-655. DOI: 10.1016/j.ejmech.2017.11.094 open in new tab
Verified by:
Gdańsk University of Technology

seen 44 times

Recommended for you

Meta Tags