Synthesis, structural characterization, and thermal properties of Ca‐ and La‐doped soda‐lime glasses by laser melting - Publication - Bridge of Knowledge

Search

Synthesis, structural characterization, and thermal properties of Ca‐ and La‐doped soda‐lime glasses by laser melting

Abstract

Laser melting techniques have been used in the preparation of unconventional glass compositions with high melting temperatures. Thus, we wanted to test the feasibility of using a CO2 laser in the preparation of nitrogen-rich oxynitride glasses and nitride silicate glasses. Melting from oxides and metallic raw materials, we wanted to study first glass formation and possible evaporation losses of the glass components. Two glass series were prepared and studied for their structure and thermal properties, one with Ca2+- and a higher melting La3+-doped soda-lime-silicate (SLS) series. In less than 3minutes of laser melting, spheres of up to 6mm diameter were successfully fabricated. The obtained glass samples were homogeneous and transparent in the visible region. X-ray diffraction and Raman spectroscopic analysis confirmed the amorphous nature of the synthesized samples. Sodium losses increase as calcium is added to the soda-lime-silicate glass. As expected, increasing Ca2+ or La3+ addition lead to increased depolymerization of the silicate network. Moreover, the increases in Tg with the addition of Ca2+ or La3+ ions indicating strengthening of the soda-lime-silicate glass by increasing strength of the M-O bonds of divalent and trivalent ions over monovalent sodium ions, weak Na-O bonds also resulting in significant evaporation loss during the short laser melting times. The thermal stability decreases upon addition of Ca2+ or La3+ ions to the soda-lime-silicate glasses.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 61 times
Publication version
Accepted or Published Version
License
Copyright (2020 The American Ceramic Society and Wiley Periodicals, Inc)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
International Journal of Applied Glass Science no. 11, pages 699 - 706,
ISSN: 2041-1286
Language:
English
Publication year:
2020
Bibliographic description:
Ali S., Wójcik N., Jonson B., Kamitsos E., Li X., Luo J., Möncke D.: Synthesis, structural characterization, and thermal properties of Ca‐ and La‐doped soda‐lime glasses by laser melting// International Journal of Applied Glass Science -Vol. 11,iss. 4 (2020), s.699-706
DOI:
Digital Object Identifier (open in new tab) 10.1111/ijag.15477
Bibliography: test
  1. Cormier L, Calas G, Beuneu B. Structural changes between soda-lime silicate glass and melt. J Non- Cryst Solids. 2011;357(3):926-31. open in new tab
  2. Wondraczek L, Mauro JC, Eckert J, Kuhn U, Horbach J, Deubener J, et al. Towards Ultrastrong Glasses. Advanced Materials. 2011;23(39):4578-86. open in new tab
  3. Iftekhar S, Grins J, Edén M. Composition-property relationships of the La2O3-Al2O3-SiO2 glass system. J Non-Cryst Solids. 2010;356(20):1043-8. open in new tab
  4. Le J, Song LX, Peng XF, Hu XF. Fracture mechanics analysis of thermally tempered glass plate: fracture induced by an embedded crack. International Journal of Fracture. 2005;132(4):299-309. open in new tab
  5. Sebdani MM, Mauro JC, Jensen LR, Smedskjaer MM. Structure-property relations in calcium aluminate glasses containing different divalent cations and SiO2. J Non-Cryst Solids. 2015;427:160-5. open in new tab
  6. Sharafat A, Grins J, Esmaeilzadeh S. Glass-forming region in the Ca-Si-O-N system using CaH 2 as Ca source. J Eur Ceram Soc. 2008;28(14):2659-64. open in new tab
  7. Sharafat A, Grins J, Esmaeilzadeh S. Hardness and refractive index of Ca-Si-O-N glasses. J Non-Cryst Solids. 2009;355(4-5):301-4. open in new tab
  8. Ali S, Paul B, Magnusson R, Broitman E, Jonson B, Eklund P, et al. Synthesis and characterization of the mechanical and optical properties of Ca-Si-O-N thin films deposited by RF magnetron sputtering. Surface and Coatings Technology. 2017;315:88-94. open in new tab
  9. Schaller T, Stebbins JF. The Structural Role of Lanthanum and Yttrium in Aluminosilicate Glasses: A 27Al and 17O MAS NMR Study. The Journal of Physical Chemistry B. 1998;102(52):10690-7. open in new tab
  10. Schuster K, Litzkendorf D, Grimm S, Kobelke J, Schwuchow A, Ludwig A, et al. Study of lanthanum aluminum silicate glasses for passive and active optical fibers: SPIE; 2013. open in new tab
  11. Mahdy EA, Ibrahim S. Influence of Y2O3 on the structure and properties of calcium magnesium aluminosilicate glasses. Journal of Molecular Structure. 2012;1027:81-6. open in new tab
  12. Bardez I, Caurant D, Loiseau P, Baffier N, Dussossoy JL, Gervais C, et al. Structural characterisation of rare earth rich glasses for nuclear waste immobilisation. Physics and Chemistry of Glasses. 2005;46(4):320-9. open in new tab
  13. Gaddam A, Fernandes HR, Tulyaganov DU, Ferreira JMF. The structural role of lanthanum oxide in silicate glasses. J Non-Cryst Solids. 2019;505:18-27. open in new tab
  14. Ellison AJG, Hess PC. Lanthanides in silicate glasses: A vibrational spectroscopic study. Journal of Geophysical Research: Solid Earth. 1990;95(B10):15717-26. open in new tab
  15. Park B, Li H, Corrales LR. Molecular dynamics simulation of La2O3-Na2O-SiO2 glasses. I. The structural role of La3+ cations. J Non-Cryst Solids. 2002;297(2):220-38. open in new tab
  16. Schaller T, Stebbins JF, Wilding MC. Cation clustering and formation of free oxide ions in sodium and potassium lanthanum silicate glasses: nuclear magnetic resonance and Raman spectroscopic findings. J Non-Cryst Solids. 1999;243(2):146-57. open in new tab
  17. Wilding M, Badyal Y, Navrotsky A. The local environment of trivalent lanthanide ions in sodium silicate glasses: A neutron diffraction study using isotopic substitution. J Non-Cryst Solids. 2007;353(52):4792-800. open in new tab
  18. Angeli F, Charpentier T, Molières E, Soleilhavoup A, Jollivet P, Gin S. Influence of lanthanum on borosilicate glass structure: A multinuclear MAS and MQMAS NMR investigation. J Non-Cryst Solids. 2013;376:189-98. open in new tab
  19. Kamitsos EI, Chryssikos GD. Borate glass structure by Raman and infrared spectroscopies. Journal of Molecular Structure. 1991;247:1-16. open in new tab
  20. Wójcik NA, Ali S, Möncke D, Tagiara NS, Kamitsos EI, Segawa H, et al. The influence of Be addition on the structure and thermal properties of alkali-silicate glasses. J Non-Cryst Solids. 2019;521:119532. open in new tab
  21. Kamitsos EI, Kapoutsis JA, Jain H, Hsieh CH. Vibrational study of the role of trivalent ions in sodium trisilicate glass. J Non-Cryst Solids. 1994;171(1):31-45. open in new tab
  22. Kamitsos EI, Risen WM. Vibrational spectra of single and mixed alkali pentasilicate glasses. J Non- Cryst Solids. 1984;65(2):333-54. open in new tab
  23. Furukawa T, Fox KE, White WB. Raman spectroscopic investigation of the structure of silicate glasses. open in new tab
  24. III. Raman intensities and structural units in sodium silicate glasses. The Journal of Chemical Physics. 1981;75(7):3226-37. open in new tab
  25. Brawer SA, White WB. Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates. The Journal of Chemical Physics. 1975;63(6):2421-32. open in new tab
  26. Efthimiopoulos I, Palles D, Richter S, Hoppe U, Möncke D, Wondraczek L, et al. Femtosecond laser- induced transformations in ultra-low expansion glass: Microstructure and local density variations by vibrational spectroscopy. Journal of Applied Physics. 2018;123(23):233105. open in new tab
  27. Wójcik NA, Jonson B, Möncke D, Kamitsos EI, Segawa H, Karczewski J, et al. The effect of nitrogen on the structure and thermal properties of beryllium-containing Na-(Li)-Si-O-N glasses. J Non-Cryst Solids. 2019;522:119585. open in new tab
  28. Grund Bäck L, Ali S, Karlsson S, Möncke D, Kamitsos EI, Jonson B. Mixed alkali/alkaline earth-silicate glasses: Physical properties and structure by vibrational spectroscopy. International Journal of Applied Glass Science. 2019;10(3):349-62.
  29. Dussauze M, Rodriguez V, Lipovskii A, Petrov M, Smith C, Richardson K, et al. How Does Thermal Poling Affect the Structure of Soda-Lime Glass? The Journal of Physical Chemistry C. 2010;114(29):12754-9. open in new tab
  30. M.D. Ingram JED, A.M. Coats, E.I. Kamitsos, J.A. Kapoutsis,. Origins of anomalous mixed-alkali effects in ion-exchanged glasses,. Glass Science and Technology-Glastechnische Berichte. 2000;73(4):89-104.
  31. Nelson BN, Exarhos GJ. Vibrational spectroscopy of cation-site interactions in phosphate glasses. The Journal of Chemical Physics. 1979;71(7):2739-47. open in new tab
  32. Möncke D, Kamitsos EI, Palles D, Limbach R, Winterstein-Beckmann A, Honma T, et al. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties. The Journal of Chemical Physics. 2016;145(12):124501. open in new tab
  33. Iftekhar S, Leonova E, Edén M. Structural characterization of lanthanum aluminosilicate glasses by 29Si solid-state NMR. J Non-Cryst Solids. 2009;355(43):2165-74. open in new tab
  34. Takahashi S, Neuville DR, Takebe H. Thermal properties, density and structure of percalcic and peraluminus CaO-Al 2 O 3 -SiO 2 glasses. J Non-Cryst Solids. 2015;411:5-12. open in new tab
  35. Stevensson B, Eden M. Structural rationalization of the microhardness trends of rare-earth aluminosilicate glasses: Interplay between the RE3+ field-strength and the aluminum coordinations. J Non-Cryst Solids. 2013;378:163-7. open in new tab
  36. Smedskjaer MM, Mauro JC, Kjeldsen J, Yue YZ. Microscopic Origins of Compositional Trends in Aluminosilicate Glass Properties. J Am Ceram Soc. 2013;96(5):1436-43. open in new tab
  37. Ali S, Jonson B. Glasses in the Ba-Si-O-N System. J Am Ceram Soc. 2011;94(9):2912-7. open in new tab
  38. Sharafat A, Forslund B, Grins J, Esmaeilzadeh S. Formation and properties of nitrogen-rich strontium silicon oxynitride glasses. J Mater Sci. 2009;44(2):664-70. open in new tab
  39. Hakeem AS, Grins J, Esmaeilzadeh S. La-Si-O-N glasses -Part I. Extension of the glass forming region. J Eur Ceram Soc. 2007;27(16):4773-81. open in new tab
  40. Tagiara NS, Palles D, Simandiras ED, Psycharis V, Kyritsis A, Kamitsos EI. Synthesis, thermal and structural properties of pure TeO 2 glass and zinc-tellurite glasses. J Non-Cryst Solids. 2017;457(Supplement C):116-25. open in new tab
  41. Konidakis I, Varsamis CPE, Kamitsos EI. Effect of synthesis method on the structure and properties of AgPO3-based glasses. J Non-Cryst Solids. 2011;357(14):2684-9. open in new tab
  42. Palles D, Konidakis I, Varsamis CPE, Kamitsos EI. Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing AgI-AgPO 3 glasses. RSC Advances. 2016;6(20):16697-710. open in new tab
  43. Bingham PA, Hand RJ, Hannant OM, Forder SD, Kilcoyne SH. Effects of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses. J Non-Cryst Solids. 2009;355(28):1526-38. open in new tab
  44. Na7.7Ca10.9Si22.5O58.9 10.4Na2O-29.3CaO-60.3SiO2 5Ca Na7.8Ca20.9Si28.8O43.82 open in new tab
  45. Series II samples 1La Na11.6Ca6.9La2.1Si35.0O46.1 open in new tab
Verified by:
Gdańsk University of Technology

seen 90 times

Recommended for you

Meta Tags