The adiabatic potentials of low-lying electronic states of the NaRb molecule - Publication - Bridge of Knowledge

Search

The adiabatic potentials of low-lying electronic states of the NaRb molecule

Abstract

Adiabatic potential energy curves and spectroscopic constants have been calculated for the NaRb molecule. The results of ten states of the symmetry Σ+, six states of the symmetry Π, and two states of the symmetry Δ are obtained by the nonrelativistic quantum chemical method used with pseudopotentials describing the interaction of valence electrons with atomic cores. Analysis is based on a comparison with the results of other theoretical and experimental studies.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 43 times
Publication version
Accepted or Published Version
License
Copyright (2015 The Royal Swedish Academy of Sciences)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICA SCRIPTA no. 90, edition 5, pages 1 - 11,
ISSN: 0031-8949
Language:
English
Publication year:
2015
Bibliographic description:
Wiatr M., Jasik P., Sienkiewicz J.: The adiabatic potentials of low-lying electronic states of the NaRb molecule// PHYSICA SCRIPTA. -Vol. 90, iss. 5 (2015), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1088/0031-8949/90/5/054012
Bibliography: test
  1. Sharma A, Bhale G L, Razvi M A N and Dixit M N 1987 Opt. Commun. 61 1 open in new tab
  2. Stwalley W C and Wang H 1999 J. Mol. Spectrosc. 195 194 open in new tab
  3. Wang H and Stwalley W C 1998 J. Chem. Phys. 108 5767 open in new tab
  4. Bahns J T, Gould P L and Stwalley W C 2000 Adv. Atom. Mol. Opt. Phys. 42 171 open in new tab
  5. Weiss S B, Bhattacharya M and Bigelow N P 2003 Phys. Rev. A 68 042708 open in new tab
  6. Walter J M and Barrat S 1928 Proc. R. Soc. Lond. Ser. A 119 257 open in new tab
  7. Kusch P 1936 Phys. Rev. 49 218 open in new tab
  8. Takahashi N and Kato H 1981 J. Chem. Phys. 75 4350 open in new tab
  9. Wang Y-C, Kajitani M, Kasahara S, Baba M, Ishikawa K and Kato H 1991 J. Chem. Phys. 95 6229 open in new tab
  10. Wang Y-C, Matsubara K and Kato H 1992 J. Chem. Phys. 97 811 open in new tab
  11. Matsubara K, Wang Y-C, Ishikawa K, Baba M, McCaffery A J and Kato H 1993 J. Chem. Phys. 99 5036 open in new tab
  12. Kasahara S, Ebi T, Tanimura M, Ikoma H, Matsubara K, Baba M and Kato H 1996 J. Chem. Phys. 105 1341 open in new tab
  13. Young Y E, Ejnisman R, Shaffer J P and Bigelow N P 2000 Phys. Rev. A 62 055403 open in new tab
  14. Tamanis M, Ferber R, Zaitsevskii A, Pazyuk E A, Stolyarov A V, Chen H, Qi J, Wang H and Stwalley W C 2002 J. Chem. Phys. 117 17 open in new tab
  15. Docenko O, Tamanis M, Ferber R, Pashov A, Knockel H and Tiemann E 2004 Phys. Rev. A 69 042503 open in new tab
  16. Jastrzebski W, Kortyka P, Kowalczyk P, Docenko O, Tamanis M, Ferber R, Pashov A, Knockel H and Tiemann E 2005 Eur. Phys. J. D 36 57 open in new tab
  17. Docenko O, Tamanis M, Ferber R, Pashov A, Knockel H and Tiemann E 2005 Eur. Phys. J. D 36 49 open in new tab
  18. Docenko O, Tamanis M, Ferber R, Pazyuk E A, Zaitsevskii A, Stolyarov A V, Pashov A, Knockel H and Tiemann E 2007 Phys. Rev. A 75 042503 open in new tab
  19. Pashov A, Jastrzebski W, Kortyka P and Kowalczyk P 2006 J. Chem. Phys. 124 204308 open in new tab
  20. Chaieb M, Habli H, Mejrissi L, Oujia B and Gadea F X 2014 Int. J. Quantum Chem. 114 731 open in new tab
  21. Korek M, Allouche A R, Kobeissi M, Chaalan A, Dagher M, Fakherddin K and Aubert-Frecon M 2000 Chem. Phys. 256 1 open in new tab
  22. Korek M and Fawwaz O 2009 Int. J. Quantum Chem. 109 938 open in new tab
  23. Zaitsevskii A et al 2001 Phys. Rev. A 63 052504 open in new tab
  24. Dardouri R, Issa K, Ouija B and Gadea F X 2012 Int. J. Quantum Chem. 112 2724 open in new tab
  25. Werner H-J et al 2006 MOLPRO version 2006.1 a package of ab initio programs www.molpro.net
  26. Lobacz P, Jasik P and Sienkiewicz J E 2013 Cent. Eur. J. Phys. 11 1107 open in new tab
  27. Miadowicz L, Jasik P and Sienkiewcz J E 2013 Cent. Eur. J. Phys. 11 1115 open in new tab
  28. Jasik P and Sienkiewcz J E 2006 Chem. Phys. 323 563 open in new tab
  29. Fuentealba P, Preuss H, Stoll H and Szentpaly L V 1982 Chem. Phys. Lett. 89 418 open in new tab
  30. Szentpaly L V, Fuentealba P, Preuss H and Stoll H 1982 Chem. Phys. Lett. 93 555 open in new tab
  31. Fuentealba P, Stoll H, Szentpaly L V, Schwerdtfeger P and Preuss H 1983 J. Phys. B 16 L323 open in new tab
  32. Prascher B, Woon D E, Peterson K A, Dunning T H Jr and Wilson A K 2011 Theor. Chem. Acc. 128 69 open in new tab
  33. Lim I S, Schwerdtfeger P, Metz B and Stoll H 2005 J. Chem. Phys. 122 104103 open in new tab
  34. Sansonetti J E 2008 J. Phys. Chem. Ref. Data 37 1659 open in new tab
  35. Sansonetti J E 2006 J. Phys. Chem. Ref. Data 35 301 open in new tab
  36. Sansonetti J E 2008 J. Phys. Chem. Ref. Data 37 1183 (erratum) open in new tab
  37. le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663 see http://leroy.uwaterloo.ca/programs open in new tab
  38. Aymar M and Dulieu O 2005 J. Chem. Phys. 122 204302 open in new tab
  39. Igel-Mann G, Wedig U, Fuentealba P and Stoll H 1986 J. Chem. Phys. 84 5007 open in new tab
  40. Docenko O, Nikolayeva O, Tamanis M, Ferber R, Pazyuk E A and Stolyarov A V 2002 Phys. Rev. A 66 052508 open in new tab
  41. Zemke W T and Stwalley W C 2001 J. Chem. Phys. 114 10811 open in new tab
Verified by:
Gdańsk University of Technology

Referenced datasets

seen 160 times

Recommended for you

Meta Tags