Electronic structure and time-dependent description of rotational predissociation of LiH - Publication - Bridge of Knowledge

Search

Electronic structure and time-dependent description of rotational predissociation of LiH

Abstract

The adiabatic potential energy curves of the ^1Sigma+ and ^1Pi states of the LiH molecule were calculated. They correlate asymptotically to atomic states, such as 2s + 1s, 2p + 1s, 3s + 1s, 3p + 1s, 3d + 1s, 4s + 1s, 4p + 1s and 4d + 1s. A very good agreement was found between our calculated spectroscopic parameters and the experimental ones. The dynamics of the rotational predissociation process of the 1^1Pi state were studied by solving the time-dependent Schrodinger equation. The classical experiment of Velasco [Can. J. Phys., 1957, 35, 1204] on dissociation in the 1^1Pi state is explained for the first time in detail.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 59 times
Publication version
Accepted or Published Version
License
Copyright (the Owner Societies 2017)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS no. 19, edition 30, pages 19777 - 19783,
ISSN: 1463-9076
Language:
English
Publication year:
2017
Bibliographic description:
Jasik P., Sienkiewicz J., Domsta J., Henriksen N.: Electronic structure and time-dependent description of rotational predissociation of LiH// PHYSICAL CHEMISTRY CHEMICAL PHYSICS. -Vol. 19, iss. 30 (2017), s.19777-19783
DOI:
Digital Object Identifier (open in new tab) 10.1039/c7cp02097j
Bibliography: test
  1. W. C. Stwalley and W. T. Zemke, J. Phys. Chem. Ref. Data, 1993, 22, 87.
  2. F. X. Gadea and T. Leininger, Theor. Chem. Acc., 2006, 116, 566. open in new tab
  3. F. H. Crawford and T. Jorgensen Jr, Phys. Rev., 1935, 47, 932. open in new tab
  4. F. H. Crawford and T. Jorgensen Jr, Phys. Rev., 1936, 49, 745. open in new tab
  5. N. L. Singh and D. C. Jain, Proc. Phys. Soc., London, 1962, 79, 753. open in new tab
  6. A. Boutalib and F. X. Gadea, J. Chem. Phys., 1992, 97, 1144. open in new tab
  7. M. E. Casida, F. Gutierrez, J. Guan, F. X. Gadea, D. Salahub and J. P. Daudey, J. Chem. Phys., 2000, 113, 7062. open in new tab
  8. H. Beriche and F. X. Gadea, Eur. Phys. J. D, 2016, 70, 2. open in new tab
  9. F. X. Gadea and A. Boutalib, J. Phys. B: At., Mol. Opt. Phys., 1993, 26, 61. open in new tab
  10. F. Gemperle and F. X. Gadea, Europhys. Lett., 1999, 48, 513. open in new tab
  11. A. S. Dickinson and F. X. Gadea, Mon. Not. R. Astron. Soc., 2000, 318, 1227. open in new tab
  12. B. O. Roos and A. J. Sadlej, J. Chem. Phys., 1982, 76, 5444. open in new tab
  13. C. R. Vidal and W. C. Stwalley, J. Chem. Phys., 1982, 77, 883. open in new tab
  14. M. Dolg, Theor. Chem. Acc., 1996, 93, 141. open in new tab
  15. F. A. Gianturco and P. Gori Giorgi, Phys. Rev. A: At., Mol., Opt. Phys., 1996, 54, 4073. open in new tab
  16. F. A. Gianturco, P. Gori Giorgi, H. Berriche and F. X. Gadea, Astron. Astrophys., Suppl. Ser., 1996, 117, 377. open in new tab
  17. P. C. Stancil and A. Dalgarno, Astrophys. J., 1997, 479, 543. open in new tab
  18. A. K. Sharma and S. Chandra, J. Phys. B: At., Mol. Opt. Phys., 2000, 33, 2623. open in new tab
  19. E. Bodo, F. A. Gianturco and R. Martinazzo, Phys. Rep., 2003, 384, 85.
  20. S. Bubin and L. Adamowicz, J. Chem. Phys., 2004, 121, 6249. open in new tab
  21. R. Fondermann, M. Hanrath and M. Dolg, Theor. Chem. Acc., 2007, 118, 777. open in new tab
  22. J. R. Trail and R. J. Needs, J. Chem. Phys., 2008, 128, 204103. open in new tab
  23. M. Aymar, J. Deiglmayr and O. Dulieu, Can. J. Phys., 2009, 87, 543. open in new tab
  24. I. L. Cooper and A. S. Dickinson, J. Chem. Phys., 2009, 131, 204303. open in new tab
  25. A. Bande, H. Nakashima and H. Nakatsuji, Chem. Phys. Lett., 2010, 496, 347. open in new tab
  26. A. Grofe, Z. Qu, D. G. Truhlar, H. Li and J. Gao, J. Chem. Theory Comput., 2017, 13, 1176. open in new tab
  27. R. Côté, E. Juarros and K. Kirby, Phys. Rev. A: At., Mol., Opt. Phys., 2010, 81, 060704. open in new tab
  28. M. Cafiero and L. Adamowicz, Phys. Rev. Lett., 2002, 88, 033002. open in new tab
  29. F. M. Fernandez, J. Chem. Phys., 2009, 130, 166101. open in new tab
  30. P. Decleva and A. Lisini, J. Phys. B: At. Mol. Phys., 1986, 19, 981. open in new tab
  31. S. Magnier, J. Phys. Chem., 2004, 108, 1052. open in new tab
  32. M. Cheng, J. M. Brown, P. Rosmus, R. Linguerri, N. Komiha and E. G. Myers, Phys. Rev. A: At., Mol., Opt. Phys., 2007, 75, 012502. open in new tab
  33. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys., 2011, 134, 064117. open in new tab
  34. F. Holka, P. G. Szalay, J. Fremont, M. Rey, K. A. Peterson and V. G. Tyuterev, J. Chem. Phys., 2011, 134, 094306. open in new tab
  35. R. S. Mulliken, Phys. Rev., 1936, 50, 1028. open in new tab
  36. M. Nest, F. Remacle and R. D. Levine, New J. Phys., 2008, 10, 025019. open in new tab
  37. R. Velasco, Can. J. Phys., 1957, 35, 1204. open in new tab
  38. A. H. Zewail, Femtochemistry, Ultrafast dynamics of the chemical bond, World Scientific Publishing Co. Pte. Ltd, Singapore, 1994, vol. I and II. open in new tab
  39. M. Grønager and N. E. Henriksen, J. Chem. Phys., 1996, 104, 3234. open in new tab
  40. M. Grønager and N. E. Henriksen, J. Chem. Phys., 1998, 109, 4335. open in new tab
  41. H. Dietz and V. Engel, J. Phys. Chem. A, 1998, 102, 7406. open in new tab
  42. K. B. Møller, N. E. Henriksen and A. H. Zewail, J. Chem. Phys., 2000, 113, 10477. open in new tab
  43. P. Fuentealba, H. Preuss, H. Stoll and L. Von Szentpály, Chem. Phys. Lett., 1982, 89, 418. open in new tab
  44. E. Czuchaj, F. Rebentrost, H. Stoll and H. Preuss, Theor. Chem. Acc., 1998, 100, 117. open in new tab
  45. E. Czuchaj, M. Krośnicki and H. Stoll, Chem. Phys., 2003, 292, 101. open in new tab
  46. M. Dolg, Effective Core Potentials, in Modern Methods and Algorithms of Quantum Chemistry, ed. J. Grotendorst, NIC Series, 2000, vol. 3, p. 507. open in new tab
  47. Unofficial set from D. Feller, see http://www.molpro.net. open in new tab
  48. T. H. Dunning Jr, J. Chem. Phys., 1989, 90, 1007. open in new tab
  49. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, D. P. open in new tab
  50. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson and M. Wang, MOLPRO, version 2012.1, is a package of ab initio programs, 2012, see http://www.molpro.net.
  51. C. E. Moore, Atomic energy levels as derived from the analysis of optical spectra-Hydrogen through Vanadium, Circular of the National Bureau of Standards, 467, U. S. Government Printing Office, Washington, 1949, vol. I.
  52. L. D. Landau and E. Lifshitz, Quantum Mechanics, Pergamon, New York, 1965. open in new tab
  53. K. R. Way and W. C. Stwalley, J. Chem. Phys., 1973, 59, 5298. open in new tab
  54. D. J. Tannor, Introduction to quantum mechanics: a time- dependent perspective, University Science Books, Sausalito, 2007.
  55. P. Bilingsley, Probability and measure, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1995.
  56. B. Schmidt and U. Lorenz, WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations, Comput. Phys. Commun., 2017, 213, 223; B. Schmidt and C. Hartmann, WavePacket: A Matlab package for numerical quantum dynamics. II: Open quantum systems and optimal control, 2017, manuscript in preparation. open in new tab
  57. M. Dulick, K.-Q. Zhang, B. Guo and P. F. Bernath, J. Mol. Spectrosc., 1998, 188, 14. open in new tab
  58. Y. L. Huang, W. T. Luh, G. H. Jeung and F. X. Gadea, J. Chem. Phys., 2000, 113, 683. open in new tab
  59. R. J. Le Roy, LEVEL: a computer program for solving the radial Schrdinger equation for bound and quasibound levels, J. Quant. Spectrosc. Radiat. Transfer, 2017, 186, 167. open in new tab
Verified by:
Gdańsk University of Technology

seen 124 times

Recommended for you

Meta Tags