The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants - Publication - Bridge of Knowledge

Search

The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants

Abstract

Molybdenum oxide layers were formed by anodization of the Mo metallic foil in a water/ethylene glycol-based electrolyte containing fluoride ions. The as-prepared, amorphous samples were annealed in air at different temperatures in a range from 100 �C to 700 �C. The crystal phase and morphology of anodized and annealed MoO3 layers were investigated using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The photoactivity of obtained materials was tested during a photocatalytic process of methylene blue (MB) decomposition. The increase of annealing temperature led to the production of films characterized by improved photocatalytic properties, with maximum photocatalytic efficiency observed for MoO3 annealed at 600 �C. The studies on the use of MoO3 as a photoelectrocatalyst for degradation of dye were performed. Furthermore, the photocatalytic activity of the MoO3 annealed at 600 �C was investigated during a photodegradation of diclofenac acting as a model pharmaceutical compound

Citations

  • 2 8

    CrossRef

  • 0

    Web of Science

  • 2 7

    Scopus

Cite as

Full text

download paper
downloaded 57 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MATERIALS CHEMISTRY AND PHYSICS no. 248, pages 1 - 8,
ISSN: 0254-0584
Language:
English
Publication year:
2020
Bibliographic description:
Szkoda M., Trzciński K., Nowak A., Gazda M., Sawczak M., Lisowska-Oleksiak A.: The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants// MATERIALS CHEMISTRY AND PHYSICS -Vol. 248, (2020), s.1-8
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.matchemphys.2020.122908
Bibliography: test
  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. open in new tab
  2. S.N. Frank, A.J. Bard, S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor, Powders 81 (1977) 1484-1488, https://doi.org/10.1021/j100530a011. open in new tab
  3. A. Heller, Hydrogen-evolving solar cells, Science 379 (1982) 1141-1148, https:// doi.org/10.1126/science.223.4641.1141. open in new tab
  4. S. Santhosh, M. Mathankumar, S. Selva Chandrasekaran, A.K. Nanda Kumar, P. Murugan, B. Subramanian, Effect of ablation rate on the microstructure and electrochromic properties of pulsed-laser-deposited molybdenum oxide thin films, Langmuir 33 (2017) 19-33, https://doi.org/10.1021/acs.langmuir.6b02940. open in new tab
  5. P.R. Huang, Y. He, C. Cao, Z.H. Lu, Impact of lattice distortion and electron doping on α-MoO 3 electronic structure, Sci. Rep. 4 (2014) 1-7, https://doi.org/10.1038/ srep07131. open in new tab
  6. T.M. McEvoy, K.J. Stevenson, J.T. Hupp, X. Dang, Electrochemical preparation of molybdenum trioxide thin films: effect of sintering on electrochromic and electro insertion properties, Langmuir 19 (2003) 4316-4326, https://doi.org/10.1021/ la027020u. open in new tab
  7. J.N. Yao, B.H. Loo, A. Fujishima, A study of the photochromic and electrochromic properties of MoO 3 thin films, Phys. Chem. 94 (1990) 13-17, https://doi.org/ 10.1002/bbpc.19900940104. open in new tab
  8. I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-Zadeh, Molybdenum oxides -from fundamentals to functionality, Adv. Mater. (2017) 1701619, https://doi.org/10.1002/adma.201701619, 1701619. open in new tab
  9. K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, Study of the photochromic properties of amorphous MoO 3 films using Raman microscopy, J. Phys. Chem. 99 (1995) 16383-16388, https://doi.org/10.1021/j100044a028. open in new tab
  10. M. Szkoda, K. Trzci� nski, M. Klein, K. Siuzdak, A. Lisowska-Oleksiak, The influence of photointercalaction and photochromism effects on the photocatalytic properties of electrochemically obtained maze-like MoO 3 microstructures, Separ. Purif. Technol. 197 (2018) 382-387, https://doi.org/10.1016/j.seppur.2018.01.033. open in new tab
  11. A. Chithambararaj, N.S. Sanjini, S. Velmathi, a C. Bose, Preparation of h-MoO 3 and α-MoO 3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation, Phys. Chem. Chem. Phys. 15 (2013) 14761-14769, https://doi.org/10.1039/c3cp51796a. open in new tab
  12. H. Zhang, L. Gao, Y. Gong, Exfoliated MoO 3 nanosheets for high-capacity lithium storage, Electrochem. Commun. 52 (2015) 67-70, https://doi.org/10.1016/j. elecom.2015.01.014. open in new tab
  13. S. Alizadeh, S.a. Hassanzadeh-Tabrizi, MoO3 fibers and belts: molten salt synthesis, characterization and optical properties, Ceram. Int. 41 (2015) 10839-10843, https://doi.org/10.1016/j.ceramint.2015.05.024. open in new tab
  14. M. Szkoda, K. Trzci� nski, K. Siuzdak, A. Lisowska-Oleksiak, Photocatalytical properties of maze-like MoO 3 microstructures prepared by anodization of Mo plate, Electrochim. Acta 228 (2017) 139-145, https://doi.org/10.1016/j. electacta.2017.01.064. open in new tab
  15. N. Vieno, M. Sillanp€ a€ a, Fate of diclofenac in municipal wastewater treatment plant -a review, Environ. Int. 69 (2014) 28-39, https://doi.org/10.1016/j. envint.2014.03.021. open in new tab
  16. J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva, A review on environmental monitoring of water organic pollutants identified by EU guidelines, J. Hazard Mater. 344 (2018) 146-162, https://doi.org/10.1016/j. jhazmat.2017.09.058. open in new tab
  17. X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui, G. Zou, Synthesis and characterization of hexagonal and truncated hexagonal shaped MoO 3 nanoplates, J. Phys. Chem. C 113 (2009) 21582-21585, https://doi.org/10.1021/jp908155m. open in new tab
  18. S. Chen, Y. Xiao, Y. Wang, A facile approach to prepare black TiO 2 with oxygen vacancy for enhancing photocatalytic activity, Nanomaterials 8 (2018) 245, https://doi.org/10.3390/nano8040245. open in new tab
  19. S.N. Lou, N. Yap, J. Scott, R. Amal, Y.H. Ng, Influence of MoO 3 (110) crystalline plane on its self-charging photoelectrochemical properties, Sci. Rep. 4 (2014) 7428, https://doi.org/10.1038/srep07428. open in new tab
  20. A. Stoyanova, R. Iordanova, M. Mancheva, Y. Dimitriev, Synthesis and structural characterization of MoO 3 phases obtained from molybdic acid by addition of HNO 3 and H 2 O 2 , J. Optoelectron. Adv. Mater. 11 (2009) 1127-1131.
  21. X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc. 131 (2009) 3152-3153, https://doi.org/10.1021/ja8092373. open in new tab
  22. H. Li, J. Xing, Z. Xia, J. Chen, Preparation of extremely smooth and boron-fluorine co-doped TiO 2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance, Electrochim. Acta 139 (2014) 331-336, https://doi. org/10.1016/j.electacta.2014.06.172. open in new tab
  23. C. Lu, L. Zhang, Y. Zhang, S. Liu, Electrodeposition of TiO 2 /CdSe heterostructure films and photocatalytic degradation of methylene blue, Mater. Lett. 185 (2016) 342-345, https://doi.org/10.1016/j.matlet.2016.09.017. open in new tab
  24. C. F� abrega, T. Andreu, A. Cabot, J.R. Morante, Location and catalytic role of iron species in TiO 2 :Fe photocatalysts: an EPR study, J. Photochem. Photobiol. Chem. 211 (2010) 170-175, https://doi.org/10.1016/j.jphotochem.2010.03.003. open in new tab
  25. D. Zhao, G. Sheng, C. Chen, X. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO 2 dyade structure, Appl. Catal. B Environ. 111-112 (2012) 303-308, https://doi.org/10.1016/j. apcatb.2011.10.012. open in new tab
  26. J. Matos, A. García, L. Zhao, M.M. Titirici, Solvothermal carbon-doped TiO 2 photocatalyst for the enhanced methylene blue degradation under visible light, Appl. Catal. Gen. 390 (2010) 175-182, https://doi.org/10.1016/j. apcata.2010.10.009. open in new tab
  27. M. Szkoda, K. Trzci� nski, M. Łapi� nski, A. Lisowska-Oleksiak, Photoinduced Kþ intercalation into MoO 3 /FTO photoanode -the impact on the photoelectrochemical performance, Electrocatalysis (2019), https://doi.org/ 10.1007/s12678-019-00561-2. open in new tab
  28. J. Li, L. Zheng, L. Li, Y. Xian, L. Jin, Fabrication of TiO 2 /Ti electrode by laser- assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue, J. Hazard Mater. 139 (2007) 72-78, https://doi.org/10.1016/j. jhazmat.2006.06.003. open in new tab
Verified by:
Gdańsk University of Technology

seen 107 times

Recommended for you

Meta Tags