The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-Toxoplasma gondii antibodies in mouse and human sera - Publication - Bridge of Knowledge

Search

The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-Toxoplasma gondii antibodies in mouse and human sera

Abstract

This study presents an evaluation of four tetravalent recombinant chimeric proteins containing fragments of the Toxoplasma gondii antigens, SAG2, GRA1, ROP1 and AMA1, as potential replacements of a the soluble, whole-cell tachyzoite lysate (TLA) used in serological assays. Recombinant chimeric proteins (SAG2-GRA1-ROP1-AMA1N, AMA1N-SAG2-GRA1-ROP1, AMA1C-SAG2-GRA1-ROP1, and AMA1-SAG2-GRA1-ROP1) obtained by genetic engineering were tested for their reactivity with specific IgM and IgG antibodies from sera of experimentally infected mice and humans with T. gondii infection using an enzyme-linked immunosorbent assay (ELISA). In total 192 serum samples from patients with acquired T. gondii infection and 137 sera from seronegative individuals were examined. The reactivity of chimeric antigens with antibodies generated during T. gondii invasion was measured and compared to the results obtained in assays based on whole-cell Toxoplasma antigen. Chimeric proteins proved effective in differentiation between T. gondii-infected and uninfected individuals (100% sensitivity and specificity in the IgG ELISAs) which shows their potential usefulness as a replacements for TLA in standardized commercial tests for the serodiagnosis of toxoplasmosis. In addition, the chimeric proteins were tested for use in avidity determination. Obtained results were comparable to those of the corresponding commercial assays, suggesting the utility of these proteins for avidity assessment. Furthermore, this study demonstrated that the AMA1-SAG2-GRA1-ROP1 chimeric protein has the potential to distinguish specific antibodies from serum samples of individuals with the early and chronic phase of T. gondii infection.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 47 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PLOS ONE no. 14, pages 1 - 23,
ISSN: 1932-6203
Language:
English
Publication year:
2019
Bibliographic description:
Ferra B., Holec-Gąsior L., Gatkowska J., Dziadek B., Dzitko K., Grąźlewska W., Lautenbach D.: The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-Toxoplasma gondii antibodies in mouse and human sera// PLOS ONE. -Vol. 14, iss. 6 (2019), s.1-23
DOI:
Digital Object Identifier (open in new tab) 10.1371/journal.pone.0217866
Bibliography: test
  1. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol. Per- gamon; 2000; 30: 1217-1258. https://doi.org/10.1016/S0020-7519(00)00124-7 PMID: 11113252 open in new tab
  2. Dunn D, Wallon M, Peyron F, Petersen E, Peckham C, Gilbert R. Mother-to-child transmission of toxo- plasmosis: risk estimates for clinical counselling. Lancet (London, England). Elsevier; 1999; 353: 1829- 33. https://doi.org/10.1016/S0140-6736(98)08220-8 PMID: 10359407 open in new tab
  3. Fatoohi AF, Cozon GJN, Greenland T, Ferrandiz J, Bienvenu J, Picot S, et al. Cellular immune responses to recombinant antigens in pregnant women chronically infected with Toxoplasma gondii. open in new tab
  4. Clin Diagn Lab Immunol. American Society for Microbiology (ASM); 2002; 9: 704-7. https://doi.org/10. 1128/CDLI.9.3.704-707.2002 PMID: 11986281 open in new tab
  5. Ambroise-Thomas P. Parasitic diseases and immunodeficiencies. Parasitology. Cambridge University Press; 2001; 122: S65-S71. https://doi.org/10.1017/S0031182000017339 PMID: 11442198 open in new tab
  6. Godwin R. Toxoplasma gondii and elevated suicide risk. Vet Rec. British Medical Journal Publishing Group; 2012; 171: 225. https://doi.org/10.1136/vr.e5832 PMID: 22941823 open in new tab
  7. Henriquez SA, Brett R, Alexander J, Pratt J, Roberts CW. Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation. Karger Publishers; 2009; 16: 122-33. https://doi.org/10. 1159/000180267 PMID: 19212132 open in new tab
  8. Pedersen MG, Mortensen PB, Norgaard-Pedersen B, Postolache TT. Toxoplasma gondii Infection and Self-directed Violence in Mothers. Arch Gen Psychiatry. American Medical Association; 2012; 69: 1123-1130. https://doi.org/10.1001/archgenpsychiatry.2012.668 PMID: 22752117 open in new tab
  9. Stommel EW, Seguin R, Thadani VM, Schwartzman JD, Gilbert K, Ryan KA, et al. Cryptogenic Epi- lepsy: An Infectious Etiology? Epilepsia. Wiley/Blackwell (10.1111); 2002; 42: 436-438. https://doi.org/ 10.1046/j.1528-1157.2001.25500.x open in new tab
  10. Torrey EF, Bartko JJ, Yolken RH. Toxoplasma gondii and Other Risk Factors for Schizophrenia: An Update. Schizophr Bull. Oxford University Press; 2012; 38: 642-647. https://doi.org/10.1093/schbul/ sbs043 PMID: 22446566 open in new tab
  11. Webster JP, Lamberton PHL, Donnelly CA, Torrey EF. Parasites as causative agents of human affec- tive disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxo- plasma gondii's ability to alter host behaviour. Proceedings Biol Sci. The Royal Society; 2006; 273: 1023-30. https://doi.org/10.1098/rspb.2005.3413 PMID: 16627289 open in new tab
  12. Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol. The Company of Biologists Ltd; 2013; 216: 99-112. https://doi.org/10.1242/jeb.074716 PMID: 23225872 open in new tab
  13. Tenter AM, Johnson AM. Recognition of recombinant Toxoplasma gondii antigens by human sera in an ELISA. Parasitol Res. Springer-Verlag; 1991; 77: 197-203. https://doi.org/10.1007/BF00930858 PMID: 2047367 open in new tab
  14. Holec-Gasior L. Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplas- mosis: current status of studies. Clin Vaccine Immunol. American Society for Microbiology (ASM); 2013; 20: 1343-51. https://doi.org/10.1128/CVI.00117-13 PMID: 23784855 open in new tab
  15. Rostami A, Karanis P, Fallahi S. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection. Infection. Springer Berlin Heidelberg; 2018; 46: 303-315. https://doi. org/10.1007/s15010-017-1111-3 PMID: 29330674 open in new tab
  16. Beghetto E, Spadoni A, Bruno L, Buffolano W, Gargano N. Chimeric antigens of Toxoplasma gondii: toward standardization of toxoplasmosis serodiagnosis using recombinant products. J Clin Microbiol. American Society for Microbiology (ASM); 2006; 44: 2133-40. https://doi.org/10.1128/JCM.00237-06 PMID: 16757610 open in new tab
  17. Dai J, Jiang M, Qu L, Sun L, Wang Y, Gong L, et al. Toxoplasma gondii: Enzyme-linked immunosorbent assay based on a recombinant multi-epitope peptide for distinguishing recent from past infection in human sera. Exp Parasitol. Academic Press; 2013; 133: 95-100. https://doi.org/10.1016/j.exppara. 2012.10.016 PMID: 23137661 open in new tab
  18. Dai J, Jiang M, Wang Y, Qu L, Gong R, Si J. Evaluation of a recombinant multiepitope peptide for sero- diagnosis of Toxoplasma gondii infection. Clin Vaccine Immunol. American Society for Microbiology; 2012; 19: 338-42. https://doi.org/10.1128/CVI.05553-11 PMID: 22219311 open in new tab
  19. Drapała D, Holec-Gąsior L, Kur J. New recombinant chimeric antigens, P35-MAG1, MIC1-ROP1, and MAG1-ROP1, for the serodiagnosis of human toxoplasmosis. Diagn Microbiol Infect Dis. Elsevier; 2015; 82: 34-39. https://doi.org/10.1016/j.diagmicrobio.2015.01.018 PMID: 25702523 open in new tab
  20. Ferra B, Holec-Gąsior L, Kur J. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins-impact of immunodominant sequences size on its diagnostic use- fulness. Parasitol Res. 2015; 114: 3291-3299. https://doi.org/10.1007/s00436-015-4552-6 PMID: 26055987 open in new tab
  21. Holec-Gąsior L, Ferra B, Drapała D, Lautenbach D, Kur J. A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxo- plasmosis. Clin Vaccine Immunol. 2012; 19: 57-63. https://doi.org/10.1128/CVI.05433-11 PMID: 22116686 open in new tab
  22. Holec-Gąsior L, Ferra B, Drapała D MIC1-MAG1-SAG1 chimeric protein, a most effective antigen for detection of human toxoplasmosis. Clin Vaccine Immunol. 2012; 19: 1977-1979. https://doi.org/10. 1128/CVI.00452-12 PMID: 23035174 open in new tab
  23. Lau YL, Thiruvengadam G, Lee WW, Fong MY. Immunogenic characterization of the chimeric surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii expressed in the yeast Pichia pastoris. Parasitol Res. Springer-Verlag; 2011; 109: 871-878. https://doi.org/10.1007/s00436-011-2315-6 PMID: 21455621 open in new tab
  24. Ferra B, Holec-Gasior L, Kur J. Serodiagnosis of Toxoplasma gondii infection in farm animals (horses, swine, and sheep) by enzyme-linked immunosorbent assay using chimeric antigens. Parasitol Int. 2015; 64: 288-294. https://doi.org/10.1016/j.parint.2015.03.004 PMID: 25817245 open in new tab
  25. Macêdo AG, Cunha JP, Cardoso THS, Silva M V, Santiago FM, Silva JS, et al. SAG2A protein from Toxoplasma gondii interacts with both innate and adaptive immune compartments of infected hosts. Parasit Vectors. BioMed Central; 2013; 6: 163. https://doi.org/10.1186/1756-3305-6-163 PMID: 23735002 open in new tab
  26. Ling Lau Y, Yik Fong M. Toxoplasma gondii: Serological characterization and immunogenicity of recom- binant surface antigen 2 (SAG2) expressed in the yeast Pichia pastoris. Exp Parasitol. Academic Press; 2008; 119: 373-378. https://doi.org/10.1016/j.exppara.2008.03.016 PMID: 18457835 open in new tab
  27. Li S, Galvan G, Araujo FG, Suzuki Y, Remington JS, Parmley S. Serodiagnosis of recently acquired Toxoplasma gondii infection using an enzyme-linked immunosorbent assay with a combination of recombinant antigens. Clin Diagn Lab Immunol. American Society for Microbiology (ASM); 2000; 7: 781-7. Available: http://www.ncbi.nlm.nih.gov/pubmed/10973455 https://doi.org/10.1128/cdli.7.5.781- 787.2000 PMID: 10973455 open in new tab
  28. Parmley SF, Sgarlato GD, Mark J, Prince JB, Remington JS. Expression, characterization, and sero- logic reactivity of recombinant surface antigen P22 of Toxoplasma gondii. J Clin Microbiol. American Society for Microbiology (ASM); 1992; 30: 1127-33. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 1583109 PMID: 1583109 open in new tab
  29. Cesbron-Delauw MF, Guy B, Torpier G, Pierce RJ, Lenzen G, Cesbron JY, et al. Molecular characteri- zation of a 23-kilodalton major antigen secreted by Toxoplasma gondii. Proc Natl Acad Sci U S A. National Academy of Sciences; 1989; 86: 7537-41. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 2798425 https://doi.org/10.1073/pnas.86.19.7537 PMID: 2798425 open in new tab
  30. Coppens I, Andries M, Liu JL, Cesbron-Delauw M-F. Intracellular trafficking of dense granule proteins in Toxoplasma gondii and experimental evidences for a regulated exocytosis. Eur J Cell Biol. Urban & Fischer; 1999; 78: 463-472. https://doi.org/10.1016/S0171-9335(99)80073-9 PMID: 10472799 open in new tab
  31. Beghetto E, Pucci A, Minenkova O, Spadoni A, Bruno L, Buffolano W, et al. Identification of a human immunodominant B-cell epitope within the GRA1 antigen of Toxoplasma gondii by phage display of cDNA libraries. Int J Parasitol. Pergamon; 2001; 31: 1659-1668. https://doi.org/10.1016/S0020-7519 (01)00288-0 PMID: 11730793 open in new tab
  32. Hiszczyńska-Sawicka E, Brillowska-Dąbrowska A, Dąbrowski S, Pietkiewicz H, Myjak P, Kur J. High yield expression and single-step purification of Toxoplasma gondii SAG1, GRA1, and GRA7 antigens in Escherichia coli. Protein Expr Purif. Academic Press; 2003; 27: 150-157. https://doi.org/10.1016/ S1046-5928(02)00593-4 PMID: 12509997 open in new tab
  33. Lecordier L, Fourmaux MP, Mercier C, Dehecq E, Masy E, Cesbron-Delauw MF. Enzyme-linked immu- nosorbent assays using the recombinant dense granule antigens GRA6 and GRA1 of Toxoplasma gon- dii for detection of immunoglobulin G antibodies. Clin Diagn Lab Immunol. American Society for Microbiology (ASM); 2000; 7: 607-11. Available: http://www.ncbi.nlm.nih.gov/pubmed/10882660 https://doi.org/10.1128/cdli.7.4.607-611.2000 PMID: 10882660 open in new tab
  34. Pietkiewicz H, Hiszczyńska-Sawicka E, Kur J, Petersen E, Nielsen H V., Paul M, et al. Usefulness of Toxoplasma gondii recombinant antigens (GRA1, GRA7 and SAG1) in an immunoglobulin G avidity test for the serodiagnosis of toxoplasmosis. Parasitol Res. Springer-Verlag; 2007; 100: 333-337. https://doi.org/10.1007/s00436-006-0265-1 PMID: 16896649 open in new tab
  35. Bradley PJ, Hsieh CL, Boothroyd JC. Unprocessed Toxoplasma ROP1 is effectively targeted and secreted into the nascent parasitophorous vacuole. Mol Biochem Parasitol. Elsevier; 2002; 125: 189- 193. https://doi.org/10.1016/S0166-6851(02)00162-7 PMID: 12467986 open in new tab
  36. Soldati D, Lassen A, Dubremetz J-F, Boothroyd JC. Processing of Toxoplasma ROP1 protein in nascent rhoptries. Mol Biochem Parasitol. Elsevier; 1998; 96: 37-48. https://doi.org/10.1016/S0166- 6851(98)00090-5 PMID: 9851605 open in new tab
  37. Holec-Gasior L, Kur J, Hiszczyńska-Sawicka E. GRA2 and ROP1 recombinant antigens as potential markers for detection of Toxoplasma gondii-specific immunoglobulin G in humans with acute toxoplas- mosis. Clin Vaccine Immunol. American Society for Microbiology; 2009; 16: 510-4. https://doi.org/10. 1128/CVI.00341-08 PMID: 19225074 open in new tab
  38. Mital J, Meissner M, Soldati D, Ward GE. Conditional Expression of Toxoplasma gondii Apical Mem- brane Antigen-1 (TgAMA1) Demonstrates That TgAMA1 Plays a Critical Role in Host Cell Invasion. Mol Biol Cell. 2005; 16: 4341-4349. https://doi.org/10.1091/mbc.E05-04-0281 PMID: 16000372 open in new tab
  39. Bargieri DY, Andenmatten N, Lagal V, Thiberge S, Whitelaw JA, Tardieux I, et al. Apical membrane anti- gen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Com- mun. Nature Publishing Group; 2013; 4: 2552. https://doi.org/10.1038/ncomms3552 PMID: 24108241 open in new tab
  40. Krishnamurthy S, Deng B, Del Rio R, Buchholz KR, Treeck M, Urban S, et al. Not a Simple Tether: Bind- ing of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail. MBio. American Society for Microbiol- ogy; 2016; 7: e00754-16. https://doi.org/10.1128/mBio.00754-16 PMID: 27624124 open in new tab
  41. Dziadek B, Gatkowska J, Brzostek A, Dziadek J, Dzitko K, Dlugonska H. Toxoplasma gondii: The immunogenic and protective efficacy of recombinant ROP2 and ROP4 rhoptry proteins in murine exper- imental toxoplasmosis. Exp Parasitol. Academic Press; 2009; 123: 81-89. https://doi.org/10.1016/j. exppara.2009.06.002 PMID: 19508869 open in new tab
  42. Gatkowska J, Hiszczynska-Sawicka E, Kur J, Holec L, Dlugonska H. Toxoplasma gondii: An evaluation of diagnostic value of recombinant antigens in a murine model. Exp Parasitol. Academic Press; 2006; 114: 220-227. https://doi.org/10.1016/j.exppara.2006.03.011 PMID: 16707125 open in new tab
  43. Paul M. Immunoglobulin G avidity in diagnosis of toxoplasmic lymphadenopathy and ocular toxoplas- mosis. Clin Diagn Lab Immunol. American Society for Microbiology (ASM); 1999; 6: 514-8. Available: http://www.ncbi.nlm.nih.gov/pubmed/10391853 PMID: 10391853 open in new tab
  44. Holec-Gasior L, Drapała D, Lautenbach D, Kur J. Toxoplasma gondii: usefulness of ROP1 recombinant antigen in an immunoglobulin G avidity assay for diagnosis of acute toxoplasmosis in humans. Polish J Microbiol. 2010; 59: 307-10. Available: http://www.ncbi.nlm.nih.gov/pubmed/21466050 open in new tab
  45. Costa JG, Peretti LE, García VS, Peverengo L, González VDG, Gugliotta LM, et al. P35 and P22 Toxo- plasma gondii antigens abbreviate regions to diagnose acquired toxoplasmosis during pregnancy: toward single-sample assays. Clin Chem Lab Med. De Gruyter; 2017; 55: 595-604. https://doi.org/10. 1515/cclm-2016-0331 PMID: 27658149 open in new tab
  46. Holec L, Hiszczyńska-Sawicka E, Gasior A, Brillowska-Dabrowska A, Kur J. Use of MAG1 recombinant antigen for diagnosis of Toxoplasma gondii infection in humans. Clin Vaccine Immunol. American Soci- ety for Microbiology (ASM); 2007; 14: 220-5. https://doi.org/10.1128/CVI.00419-06 PMID: 17202305 open in new tab
  47. Montoya JG. Laboratory Diagnosis of Toxoplasma gondii Infection and Toxoplasmosis. J Infect Dis. 2002; 185: S73-S82. https://doi.org/10.1086/338827 PMID: 11865443 open in new tab
  48. Montoya JG, Remington JS. Clinical Practice: Management of Toxoplasma gondii Infection during Pregnancy. Clin Infect Dis. 2008; 47: 554-566. https://doi.org/10.1086/590149 PMID: 18624630 open in new tab
  49. Robert-Gangneux F, Darde M-L. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin Microbiol Rev. 2012; 25: 264-296. https://doi.org/10.1128/CMR.05013-11 PMID: 22491772 open in new tab
  50. Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science. Ameri- can Association for the Advancement of Science; 2011; 333: 463-7. https://doi.org/10.1126/science. 1204988 PMID: 21778402 open in new tab
  51. Liu Q, Li F-C, Zhou C-X, Zhu X-Q. Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol. Academic Press; 2017; 176: 89-98. https://doi.org/10.1016/j. exppara.2017.03.001 PMID: 28286325 open in new tab
  52. Poukchanski A, Fritz HM, Tonkin ML, Treeck M, Boulanger MJ, Boothroyd JC. Toxoplasma gondii Spo- rozoites Invade Host Cells Using Two Novel Paralogues of RON2 and AMA1. Moreno SN, editor. PLoS One. Public Library of Science; 2013; 8: e70637. https://doi.org/10.1371/journal.pone.0070637 PMID: 23940612 open in new tab
  53. Beghetto E, Nielsen HV, Del Porto P, Buffolano W, Guglietta S, Felici F, et al. A Combination of Anti- genic Regions of Toxoplasma gondii Microneme Proteins Induces Protective Immunity against Oral Infection with Parasite Cysts. J Infect Dis. Oxford University Press; 2005; 191: 637-645. https://doi.org/ 10.1086/427660 PMID: 15655789 open in new tab
  54. Beghetto E, Buffolano W, Spadoni A, Del Pezzo M, Di Cristina M, Minenkova O, et al. Use of an immu- noglobulin G avidity assay based on recombinant antigens for diagnosis of primary Toxoplasma gondii infection during pregnancy. J Clin Microbiol. American Society for Microbiology (ASM); 2003; 41: 5414- 8. https://doi.org/10.1128/JCM.41.12.5414-5418.2003 PMID: 14662919 open in new tab
  55. Petersen E, Borobio M V., Guy E, Liesenfeld O, Meroni V, Naessens A, et al. European Multicenter Study of the LIAISON Automated Diagnostic System for Determination of Toxoplasma gondii-Specific Immunoglobulin G (IgG) and IgM and the IgG Avidity Index. J Clin Microbiol. 2005; 43: 1570-1574. https://doi.org/10.1128/JCM.43.4.1570-1574.2005 PMID: 15814967 open in new tab
  56. Sensini A, Pascoli S, Marchetti D, Castronari R, Marangi M, Sbaraglia G, et al. IgG avidity in the sero- diagnosis of acute Toxoplasma gondii infection: a multicenter study. Clin Microbiol Infect. Elsevier; 1996; 2: 25-29. https://doi.org/10.1111/J.1469-0691.1996.TB00196.X PMID: 11866807 open in new tab
  57. Sensini A. Toxoplasma gondii infection in pregnancy: opportunities and pitfalls of serological diagnosis. Clin Microbiol Infect. Elsevier; 2006; 12: 504-512. https://doi.org/10.1111/j.1469-0691.2006.01444.x PMID: 16700697 open in new tab
  58. Meroni V, Genco F, Tinelli C, Lanzarini P, Bollani L, Stronati M, et al. Spiramycin Treatment of Toxo- plasma gondii Infection in Pregnant Women Impairs the Production and the Avidity Maturation of T. gon- dii-Specific Immunoglobulin G Antibodies. Clin Vaccine Immunol. 2009; 16: 1517-1520. https://doi.org/ 10.1128/CVI.00253-09 PMID: 19692628 open in new tab
Verified by:
Gdańsk University of Technology

seen 155 times

Recommended for you

Meta Tags