The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids - Publication - Bridge of Knowledge

Search

The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids

Abstract

In this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in a crossed molecular beam set up using a potassium atom as an electron donor. The negative ions formed in the collision region were mass analysed with a reflectron time-of-flight mass spectrometer. In the unimolecular decomposition of the temporary negative ion, the two most relevant yields were assigned to BO− and BO2−. Moreover, the collision-induced reaction was shown to be selective, i.e., at energies below 100 eV, it mostly formed BO−, while at energies above 100 eV, it mostly formed BO2−. In order to further our knowledge on the complex internal reaction mechanisms underlying the influence of the hybridization state of the boron atom, cyclohexylboronic acid was also investigated in the same collision energy range, where the main dissociation channel yielded BO2−. The experimental results for phenyl boronic acid are supported by ab initio theoretical calculations of the lowest unoccupied molecular orbitals (LUMOs) accessed in the collision process.

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Authors (10)

Cite as

Full text

download paper
downloaded 29 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES no. 20,
ISSN: 1661-6596
Language:
English
Publication year:
2019
Bibliographic description:
Lozano A., Pamplona B., Kilich T., Łabuda M., Mendes M., Pereira-Da-Silva J., García G., Gois P., Ferreira Da Silva F., Limão-Vieira P.: The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids// INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES -Vol. 20,iss. 22 (2019), s.5578-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ijms20225578
Bibliography: test
  1. Ban, H.S.; Nakamura, H. Boron-based drug design. Chem. Rec. 2015, 15, 616-635. [CrossRef] [PubMed] open in new tab
  2. Santos, F.M.F.; Rosa, J.N.; Candeias, N.R.; Carvalho, C.P.; Matos, A.I.; Ventura, A.E.; Florindo, H.F.; Silva, L.C.; Pischel, U.; Gois, P.M.P. A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chem. A Eur. J. 2016, 22, 1631-1637. [CrossRef] [PubMed] open in new tab
  3. Mader, H.S.; Wolfbeis, O.S. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta 2008, 162, 1-34. [CrossRef] open in new tab
  4. Fu, H.; Fang, H.; Sun, J.; Wang, H.; Liu, A.; Sun, J.; Wu, Z. Boronic Acid-based Enzyme Inhibitors: A Review of Recent Progress. Curr. Med. Chem. 2014, 21, 3271-3280. [CrossRef] [PubMed] open in new tab
  5. Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346-368. [CrossRef] open in new tab
  6. Boudaïffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658-1660.
  7. Martin, F.; Burrow, P.D.; Cai, Z.; Cloutier, P.; Hunting, D.; Sanche, L. DNA strand breaks induced by 0-4 eV electrons: The role of shape resonances. Phys. Rev. Lett. 2004, 93, 6-9. [CrossRef] open in new tab
  8. Sanche, L. Low energy electron-driven damage in biomolecules. Eur. Phys. J. D 2005, 35, 367-390. [CrossRef] open in new tab
  9. Wang, C.R.; Nguyen, J.; Lu, Q. Bin Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: A new molecular mechanism for reductive DNA damage. J. Am. Chem. Soc. 2009, 131, 11320-11322. [CrossRef] open in new tab
  10. Int. J. Mol. Sci. 2019, 20, 5578 14 of 15 open in new tab
  11. Ferreira Da Silva, F.; Almeida, D.; Antunes, R.; Martins, G.; Nunes, Y.; Eden, S.; Garcia, G.; Limão-Vieira, P. Electron transfer processes in potassium collisions with 5-fluorouracil and 5-chlorouracil. Phys. Chem. Chem. Phys. 2011, 13, 21621-21629. [CrossRef] open in new tab
  12. Mendes, M.; Probst, M.; Maihom, T.; García, G.; Limão-Vieira, P. Selective Bond Excision in Nitroimidazoles by Electron Transfer Experiments. J. Phys. Chem. A 2019, 123, 4068-4073. [CrossRef] [PubMed] open in new tab
  13. Mendes, M.; Pamplona, B.; Kumar, S.; da Silva, F.F.; Aguilar, A.; García, G.; Bacchus-Montabonel, M.C.; Limao-Vieira, P. Ion-pair formation in neutral potassium-neutral pyrimidine collisions: Electron transfer experiments. Front. Chem. 2019, 7, 1-10. [CrossRef] [PubMed] open in new tab
  14. Almeida, D.; Ferreira Da Silva, F.; García, G.; Limão-Vieira, P. Selective bond cleavage in potassium collisions with pyrimidine bases of DNA. Phys. Rev. Lett. 2013, 110, 1-5. [CrossRef] [PubMed] open in new tab
  15. Manura, J.; Manura, D. Isotope Distribution Calculator and Mass Spec Plotter. Sci. Instrum. Serv. 2009, 1996-2009.
  16. Zhai, H.J.; Wang, L.M.; Li, S.D.; Wang, L.S. Vibrationally resolved photoelectron spectroscopy of BO-and BO2-: A joint experimental and theoretical study. J. Phys. Chem. A 2007, 111, 1030-1035. [CrossRef] open in new tab
  17. Alizadeh, E.; Orlando, T.M.; Sanche, L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379-398. [CrossRef] open in new tab
  18. Alizadeh, E.; Sanz, A.G.; García, G.; Sanche, L. Radiation Damage to DNA: The Indirect Effect of Low Energy Electrons. J. Phys. Chem. Lett. 2013, 4, 820-825. [CrossRef] open in new tab
  19. Cunha, T.; Mendes, M.; Ferreira Da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.C.; Limão-Vieira, P. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods. J. Chem. Phys. 2018, 148. [CrossRef] open in new tab
  20. Luo, Y.-R. Bond dissociation energies. Q. Rev. Chem. Soc. 2009, 9, 65-98.
  21. Ervin, K.M.; Anusiewicz, I.; Skurski, P.; Simons, J.; Lineberger, W.C. The only stable state of O2-is the X 2 g ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV. J. Phys. Chem. A 2003, 107, 8521-8529. [CrossRef] open in new tab
  22. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50-64. [CrossRef] [PubMed] open in new tab
  23. Antunes, R.; Almeida, D.; Martins, G.; Mason, N.J.; Garcia, G. Negative ion formation in potassium-Nitromethane collisions. Phys. Chem. Chem. Phys. 2010, 12, 12513-12519. [CrossRef] [PubMed] open in new tab
  24. Bacchus-Montabonel, M.C.; Łabuda, M.; Tergiman, Y.S.; Sienkiewicz, J.E. Theoretical treatment of charge-transfer processes induced by collision of Cq+ ions with uracil. Phys. Rev. A At. Mol. Opt. Phys. 2005, 72, 1-9. [CrossRef] open in new tab
  25. Erdmann, E.; Bacchus-Montabonel, M.C.; Łabuda, M. Modelling charge transfer processes in C2+-tetrahydrofuran collision for ion-induced radiation damage in DNA building blocks. Phys. Chem. Chem. Phys. 2017, 19, 19722-19732. [CrossRef] open in new tab
  26. Bacchus-Montabonel, M.C.; Tergiman, Y.S. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine. Phys. Chem. Chem. Phys. 2011, 13, 9761-9767. [CrossRef] open in new tab
  27. Bacchus-Montabonel, M.C. Proton-induced damage on 2-aminooxazole, a potential prebiotic compound. J. Phys. Chem. A 2015, 119, 728-734. [CrossRef] open in new tab
  28. Bacchus-Montabonel, M.C. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-d-ribose. J. Phys. Chem. A 2014, 118, 6326-6332. [CrossRef] open in new tab
  29. Almeida, D.; Bacchus-Montabonel, M.C.; Da Silva, F.F.; García, G.; Limão-Vieira, P. Potassium-uracil/thymine ring cleavage enhancement as studied in electron transfer experiments and theoretical calculations. J. Phys. Chem. A 2014, 118, 6547-6552. [CrossRef] open in new tab
  30. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652. [CrossRef] open in new tab
  31. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789. [CrossRef] open in new tab
  32. Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829-5835. [CrossRef] open in new tab
  33. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78. [CrossRef] open in new tab
  34. Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242-253. [CrossRef] open in new tab
  35. Sergentu, D.C.; Amaouch, M.; Pilmé, J.; Galland, N.; Maurice, R. Electronic structures and geometries of the XF 3 (X = Cl, Br, I, At) fluorides. J. Chem. Phys. 2015, 143. [CrossRef] [PubMed] open in new tab
  36. Lawley, K.P.; Roos, B.O. AB Initio Methods in Quantum Chemistry II. Adv. Chem. Phys. 1987, 69, 399-466. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

Referenced datasets

seen 115 times

Recommended for you

Meta Tags